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Abstract—The identification and management of pest 

infestations in a timely manner have been an ever-pressing issue, 

more so than ever now, when new pests have arrived from around 

the world and governments are encouraging farmers to use fewer 

and fewer pesticides. The use of drones and artificial intelligence 

in the monitoring of orchards has taken a strong rise in recent 

years due to the advantages offered by efficiency, coverage, and 

price. A particularly dangerous insect in fruit production is the 

brown marmorated stink bug (BMSB). The paper seeks to look at 

a performance comparison in BMSB detection between three 

states of the art models of image detection and classification: 

MobileNetV2, Xception, and EfficientNet. Each network model 

was slightly modified being thus adapted for this application and 

the results obtained had high accuracy, between 97% and 99%. 

Keywords—convolutional neural networks, image processing, 

insect detection, orchard monitoring  

I. INTRODUCTION  

In the case of monitoring agricultural crops and, in 
particular, orchards, methods and algorithms for the detection 
and evaluation of harmful insects have improved automation 
processes and provided governments or agricultural landowners 
with particularly useful information for appropriate actions. The 
automatic detection and monitoring of pests in agricultural crops 
with the help of remotely controlled image acquisition and 
processing systems based on neural networks represent a new 
trend in this field [1], [2]. 

Halyomorpha Halys (HH) is the scientific name for the 
colloquially named brown marmorated stink bug (BMSB), 
which has been shown to be a major problem for orchards all 
around Europe and North America [3], [4]. It has been 
accidentally introduced in Europe and the United States starting 
in the late 1990s where it has become a major threat to the health 
of fruits and trees, costing farmers upwards of tens of millions 
of euros in damages every season. Having been introduced from 
completely foreign ecosystems, BMSB presents itself with no 
natural enemies to limit its spread, thus continuing its territorial 
expansion to ever more states, both in North America and 
Europe. 

Considering the financial losses this pest incurs, containing 
and eliminating it from orchards and other types of plantations 

has become a pressing need, one that promises to reduce and 
aims to eliminate the need for pesticides, as well as prevent any 
corresponding crop losses. Traditional insecticide-applying 
methods have proven to be slow and unable to keep up with the 
insect’s spreading patterns, thus inspiring farmers and 
researchers to investigate novel ways of tackling this task. 

To combat the spreading of pests effectively and accurately 
between crops, UAVs have been used in conjunction with 
machine learning algorithms to identify infested individuals 
based on images obtained from cameras mounted as payloads on 
multirotor or fixed-wing drones. As each type of crop requires 
specific approaches to warrant a successful identification task, 
different types of imaging techniques and machine-learning 
algorithms must be employed [5]. More specifically, for the task 
of identifying BMSB specimens on trees from orchards, 
multirotor drones must be equipped with cameras and an image 
classification algorithm ought to be chosen, developed, and 
trained. 

Scientific works dealing with the detection and classification 
of insects from images are as old as the craft itself, but most of 
the time the imagery used is very specialized in its quality and 
origin. More specifically, many works frequently cited use 
images from known databases for their training steps; they are 
of great quality and will make it easy for good algorithms to 
extract features and make good predictions. Some examples of 
the most used public databases containing annotation insects are 
Maryland (https://www.marylandbiodiversity.com/) and IP102 
(https://github.com/xpwu95/IP102). Based on these datasets, 
insects such as harmful bugs were classified with the help of 
neural networks or combinations of neural networks [6], [7].   

While being great quality sources of images, taken by 
professionals to ensure the best visibility of specie-specific 
features, they are non-representative with respect to the real-
world conditions that one might encounter in the field. The 
presence of intense sunlight, shading from nearby plants, or 
unfavorable angles makes for certain features to be less visible 
or for otherwise less evident features to be unrealistically 
exaggerated, thus bringing about supplementary confusion with 
respect to the species type. Even less apparent sources of error, 
such as cloud presence or plant-surface texture can cause 
unexpected shifts in light temperature or undesired reflection 
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and polarization of light. Furthermore, when considering the 
mission of using UAVs as the source of the images, 
supplementary hurdles, such as lesser proximity to specimens or 
a more vibrationally-intensive medium, must be taken into 
account as additional sources of noise, and possibly unusable 
images. 

The growing popularity of machine learning among the 
public, coupled with a pressing need to obtain less chemically 
tainted produce while eliminating pests, has given rise to a new 
field of intelligent agriculture. Researchers and cultivators alike 
are investing more time and money than ever before in new 
technologies to help them fight pests and diseases without 
resourcing harmful chemicals. 

One of these innovative approaches is the use of orchard or 
crop imagery to study and classify the insects most commonly 
affecting crops, which recently has also made use of drones and 
other UAV systems to acquire aerial imagery of the crops 
affected. The number of scientific resources regarding such 
studies is constantly increasing and the quality and accuracy of 
the developed methods are getting better and better. 

To tackle this issue, one team of researchers developed a 
lightweight deep neural network called CPAFNet, built on a pre-
existing CPAFNet architecture that was enhanced with the 
improvements in structure brought about by VGG16 and 
InceptionV3 [8]. This approach yielded 92.63% accuracy over 
6000 iterative training steps, managing to surpass the VGG16 
and InceptionV3 models. 

Another approach to this task involved developing a fusing 
of high-accuracy models, namely ResNet50, AlexNet, VGG16, 
and InceptionResNetV2, into a computerized detection method 
to recognize three types of pests affecting citruses [9]. The team 
managed to get 99% accuracy, with the only limitation being the 
necessity to manually take all the necessary imagery. However, 
as the authors of the paper have mentioned, this opens up the 
door for using UAVs as a means of image acquisition.  

Researchers making more intense use of UAVs have 
developed systems and methodologies of analysis by equipping 
multirotor UAVs with high-resolution cameras, taking a great 
many photos of the crop of interest, and using the images to train 
classification and segmentation models [5]. The images taken 
with the UAV were then used in conjunction with transfer 
learning and fine-tuning to obtain very good accuracies from 
InceptionV3, ResNet50, VGG16, VGG19, and Xception. 

This current paper seeks to look at a performance 
comparison in BMSB detection between three states of the art 
models of image detection and classification: MobileNetV2, 
Xception, and EfficientNet. Each network model was slightly 
modified being thus adapted for this application and the results 
obtained had high accuracy, between 97% and 99%. 

II. MATERIALS AND METHODS 

A. Dataset Used 

The dataset used to train (by transfer learning) and test the 
proposed CNN (convolutional neural networks) models is 
comprised of images taken by a multirotor UAV in a pear 
orchard, as well as manually taken photos from the university’s 
gardens. All images have been manually verified for their focus 

and split into two classes: one class for BMSB (class ‘HH’) and 
another one for other insects and plant environments (class 
’Other’). The roughly prepared images have then been split into 
two directories, one corresponding to each class for further 
cleaning and augmentation. Pictured in Fig. 1, we have a 
selection of nine images pertaining to the ‘HH’ class. The 
selected images have already been cleaned and are readied for 
the learning process. The dataset contains images with BMSB 
both adults and nymphs.  

  

a) b) c) 

 
d) e) f) 

  
g) h) i) 

Fig. 1. Selection of class HH images. 

Presented in Fig. 2, there is a nine-image collection of 
images belonging to the ‘Other’ class. Such images consist of 
vegetation and foliage corresponding to the usual environment 
of the BMSB insect, as well as other commonly encountered 
insects that might appear in real-world images acquired by 
drones in the field: Fig. 2 a, c, e, f, i – other insects; Fig. 2 b, d, 
g, h – background from the trees. 

Splitting the dataset for different phases was done in the 
usual way, using 70% of the total images for training, 20% for 
validation, and the remainder 10% reserved for testing the model 
performance once training was completed. We considered a 
separate subset of images whose only purpose is to test the 
model performance, without having been used for training, to 
prevent the evaluation of the model from being skewed by 
previously learned features. Thus, from the total amount of 2000 
sample images, 200 were set aside for accuracy, performance, 
and duration of obtaining predictions in the testing phase. 
Examples of test images are presented in Fig. 3: a, b, c – HH 
Class, adults or nymphs; d, f, e – Other Class. 

Authorized licensed use limited to: Polytechnic University of Bucharest. Downloaded on December 14,2023 at 14:39:46 UTC from IEEE Xplore.  Restrictions apply. 



a) b) c) 

  
d) e) f) 

g) h) i) 

Fig. 2. Selection of Class Other images. 

   
a) b) c) 

   
d) e) f) 

Fig. 3. Examples of test images. 

B. Neural Networks Used 

Three deep convolutional networks are tested and compared 
for HH detection: MobileNetV2, Xception, and EfficientNet. 
The need to select the most efficient neural networks for the 
detection and classification of HH will aim to create a multi-
network system with a global decision, having superior 
detection performance of these insects in really difficult 
conditions (orchards). 

Developed by engineers and scientists at Google, 
MobileNetV2 is a CNN that is comprised of 53 layers and was 
trained on the industry standard dataset ImageNet. Thanks to the 
extensive amount of image classes and information that 
ImageNet holds, MobileNetV2 can classify 1000 different 

image classes with the highest accuracy at the time of its 
inception [10]. Built on the grounds of MobileNetV1, this new 
model brings about improvements in performance, as well as a 
more robust architecture. With a solid performance base 
provided by the original MobileNetV1 model, the research team 
was able to create a more modern and better-performing model. 
The new model improves over the old one by centering its 
architecture around inverted residuals and linear bottlenecks. 
Inverted residuals allow the network to be more computationally 
efficient by reducing the size of the feature map while preserving 
accuracy. This is achieved by inverting the order of operations 
inside each computational block, starting with a 1×1 convolution 
followed by a 3×3 convolution to reduce the size of the feature 
map, ending with another 1×1 convolution to restore the shape 
of the tensor. Similarly, linear bottlenecks are blocks that make 
use of a linear projection layer for feature map reduction, a 3×3 
convolution, and an output projection layer that increases the 
feature map size. This approach, together with the inverted 
residual blocks, helps make the model even more 
computationally efficient than its predecessor while offering 
state-of-the-art accuracy. 

Like MobileNetV2, Xception is a machine learning model 
developed by Google and is a successor to InceptionV3, offering 
improvements in accuracy and a reduction in computational 
intensity. It is a deep learning model with modified depth 
separable convolutions that were used in the original iterations 
of the Inception models, replacing them with a modified version 
[11]. The new architecture takes a depth-wise separable 
convolution block, comprised of a depth-wise convolution 
followed by a pointwise convolution, and inverts the order of 
operations. This allows the model to perform a low-cost 
pointwise convolution at the input of the layer, following it with 
a depth-wise convolution after it, thus reducing the 
computational strain while maintaining high accuracy. 

The EfficientNet B0 architecture [12] has an input layer and 
a series of repeated layers like the squeezed bottleneck, depth-
wise separable convolution, and pointwise convolution. Each of 
these blocks is computationally efficient, reducing the number 
of parameters and increasing the model’s capacity. This network 
model uses the scaling action of the architecture in three 
directions: depth, width, and resolution to optimize the 
performances.  

C. Transfer Learning 

The basic principle of transfer learning is that certain 
attributes acquired during the first task will be applicable to the 
second task, allowing the model to converge more quickly and 
efficiently. For the task at hand, transfer learning was used as the 
basis for furthering the learning and classification capabilities of 
pre-existing models, shortening the development duration as 
well as guaranteeing a well-tested network architecture. The 
models used are state-of-the-art in image classification tasks and 
have been trained on the ImageNet dataset which learns patterns 
and features for over 1000 different image classes. 

D. Performance Metrics 

To evaluate the performance of the models and obtain a clear 
assessment of each one's behavior, statistical indicators derived 
from the confusion matrix were used (Table I).  

Authorized licensed use limited to: Polytechnic University of Bucharest. Downloaded on December 14,2023 at 14:39:46 UTC from IEEE Xplore.  Restrictions apply. 



TABLE I.  PERFORMANCE INDICATORS USED     

Indicator Formula 

Accuracy ��� =
�� + ��

�� + �� + �� + ��
 

Precision 
��

�� + ��
 

Dice 
Coefficient 

2 ∙ ��

2 ∙ �� + �� + ��
 

The basic elements of the confusion matrix, marked in Table 
I are TP – true positive, TN – true negative, FP – false positive, 
and FN – false negative. 

III. IMPLEMENTATION 

A. Data Cleaning and Preparation 

Before the images were ready for training the model, 
further processing was needed to ensure data cleanliness and 
correctness. The initially selected images were processed by 
custom software meant to allow the user to obtain a 512×512 
image that, while still larger than what models require, retains 
enough usable detail to properly train the models. 

To preserve the natural lighting and environmental 
conditions that one might find in an actual orchard, no color 
correction, histogram equalization, contrast enhancements, or 
sharpening filters were applied to the images. Instead, the only 
additional processing done to the initial dataset was an 
augmentation step to increase the size of the dataset and allow 
the model to learn from a more detailed set of images. 

Augmentation was done in the form of morphological 
transformations to the images, applying a combination of 
mirroring, shearing, rotational, and flipping operations. To 
prevent overfitting the augmentation step would only produce 
one extra image per source image, doubling the size of the 
original collection of images without introducing many similar 
images. In the case of images that had a rotational 
transformation applied to them, filling in the missing data 
caused by rotating the original image was achieved using nearest 
interpolation. 

B. Model Architectures 

The bases for this work were Xception, MobileNetV2, and 
EfficientNet models which were augmented with additional 
layers to better train them on the working dataset. Common to 
the models is the input sequence which consists of an input 
layer that takes 224×224×3 images in 8-bit unsigned character 
format followed by a Rescaling layer that transforms those 
images into floating point format in the 0 to 1 range. The models 
have the 1000 neuron dense layer removed, as that was initially 
required for the 1000 classes that the ImageNet dataset was 
divided into. Instead, our models replace that layer with an 
output sequence specific to the model and which was found to 
have better accuracy and not lengthen the learning process 
unnecessarily.  

In the case of the Xception model, its output sequence 
consists of a Global Average Pooling 2D layer, a Dropout layer 
to prevent overfitting by randomly dropping out 20% of the 

neurons, and a Dense layer with two neurons, pertaining to the 
two classes of images. 

Table II presents the architecture of the model as 
complemented to better fit the dataset and allow for further 
feature learning. 

For the MobileNetV2 model (Table III), the output sequence 
consists of a Global Average Pooling 2D layer, and a series of 
Dense layers, each with a decreasing number of parameters, all 
having a Dropout layer in between to reduce the chances of 
overfitting. 

TABLE II.  XCEPTION ADAPTED ARCHITECTURE  

Input layer (224, 224, 3) 

Rescaling (224, 224, 3) 

Xception 

Global Average Pooling 2D 

Dropout (0.2) 

Dense (2) 

Total Parameters 20,863,529 

Trainable Parameters 2,049 

TABLE III.  MOBILENETV2 ADAPTED ARCHITECTURE     

Input layer (224, 224, 3) 

Rescaling 

MobileNetV2 

Global Average Pooling 2D 

Dense (512) 

Dropout (0.2) 

Dense (256) 

Dropout (0.2) 

Dense (64) 

Dropout (0.2) 

Dense (2) 

Total Parameters 3,061,762 

Trainable Parameters 803,778 

Compared with the Xception model, MobileNetV2 is larger 
in size, has more trainable parameters, and requires a slightly 
longer training period for each epoch. In total, both models were 
taught over 20 epochs. 

The adaptation of the EfficientNet architecture to BMSB 
detection presented in Table IV is similar to those related to 
Xception and MobileNetV2 models. 

TABLE IV.  EFFICIENTNET ADAPTED ARCHITECTURE     

Input layer (224, 224, 3) 

Rescaling Normalization 

EfficientNet B0, no pre-trained weights, classes=2 

Global Average Pooling 2D 

Dropout (0.5) 

Dense (2) + Softmax 

Total Parameters 4,335,998 

Trainable Parameters 328,450 
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IV. EXPERIMENTAL RESULTS AND DISCUSSIONS 

A. Overview of Training Parameters and Performance 

Having obtained a final dataset that was ready to be used 
as learning material for the models, training was commenced 
for each model with the same order of images for the dataset. 
The performance metrics used for both models are accuracy, 
precision, and the Dice coefficient. 

Considering that the number of parameters and trainable 
parameters varies between the models, different results were 
obtained in terms of training time and time per epoch spent 
learning (Table V). 

In Fig. 4 – Fig. 9 the accuracies and loss functions are 
presented for Xception, MobileNetV2, and EfficientNet models 
both for training and testing algorithms. 

 

TABLE V.  TRAINING PARAMETERS FOR EACH MODEL 

Model Xception MobileNetV2 EfficientNet 

Total parameters 20 863 529 3 061 762 4 335 998 

Trainable 
parameters 

2 049 803 778 328 450 

Training epochs 20 20 20 

Time per epoch (s) 154 63 31 

Total time (s) 3080 1260 620 

 

 

Fig. 4. Xception test and validation accuracy for 20 Epochs. 

As can be seen in Fig. 4, Xception has a steadily increasing 
validation accuracy that seems to stabilize around 98%. While 
there might be a possibility to further increase the accuracy by 
increasing the number of epochs, the long training time per 
epoch, as can be seen in Table V, would not justify increasing 
the number of epochs.  

 

Fig. 5. MobileNetV2 test and validation accuracy. 

 

Fig. 6. EfficientNet training and testing loss. 

 

 

Fig. 7. Xception training and testing toss. 

 

Fig. 8. MobileNetV2 training and testing loss. 

 

Fig. 9. EfficientNet training and testing loss. 
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Compared with its counterpart, MobileNetV2 (Fig. 5) has a 
higher validation accuracy and significantly shorter training 
times. Validation accuracy hovers around the 99% value with a 
slight variation between epochs. 

Fig. 7, Fig. 8, and Fig. 9 present the loss functions for the 
three models, showing a decreasing trend with increases in the 
number of epochs, while MobileNetV2 has slightly lower loss 
values. Moreover, in the case of MobileNetV2 the loss function 
settles around values very close to zero, while in the case of 
Xception, its loss function settles around 0.07. 

B. Overview of Testing Performance 

For the testing phase, the models that were trained on the 
exact dataset, with the same order of images, were saved on local 
storage and prepared for future loadings. The exact same dataset 
was used for both models, consisting of 200 images from both 
classes. The accuracy, precision, and Dice coefficient were 
computed for the three models and are presented in Table VI and 
Table VII. 

TABLE VI.  TESTING RESULTS FOR CONFUSION MATRIX     

 TP TN FP FN 

Xception 45 147 3 5 

MobileNetV2 46 149 2 3 

EfficientNet 46 148 3 3 

TABLE VII.  TESTING PERFORMANCES 

CNN Xception MobileNetV2 EfficientNet 

Accuracy 0.96 0.975 0.97 

Precision 0.938 0.958 0.939 

Dice Coefficient 0.918 0.948 0.939 

 

Testing behavior is like the training and validation steps, 
with MobileNetV2 slightly outperforming Xception and 
EfficientNet in terms of accuracy, precision, and Dice 
coefficient.  

V. CONCLUSIONS 

Architecture adaptations were made for the proposed 
networks to suit the application, and transfer learning was used 
to learn the new model layers while preserving the large amount 
of pre-learned information that the original models had. The 
three models performed very well, with an accuracy between 
96% and 97.5%. Regarding the training times, the values can be 
improved by using a more powerful computer. As future work, 
we will develop a system based on the fusion of the decisions of 
the best neural networks to increase the accuracy in detecting 
harmful insects.  
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