
  

  

Abstract— The paper’s purpose was to investigate some 

methods based on neural networks for the detection and 

classification of harmful insects for agriculture as the 

Halyomorpha Halys. The implementation of different object 

detection networks for image categorization was analyzed. 

Images from the Maryland Biodiversity database were used for 

neural network training and testing. Rotation, scaling, blurring, 

mirroring, and other techniques were employed for data 

augmentation. For the detection and classification of 

Halyomorpha Halys, some neural networks that include 

multiple smaller networks were implemented and investigated. 

The networks used are the following: YOLOv5s, SSD with 

different backbones such as MobileNet V1, MobileNet V2, and 

ResNet-50, Faster R-CNN with ResNet-50 backbone, and 

EfficientDet-D0. Moreover, neural networks were evaluated and 

compared based on performance metrics such as accuracy and 

time. Performances like accuracy between 0.49 – 0.86 and time 

between 36 ms – 55 ms were obtained. The best results were 

obtained for YOLOv5s, in terms of accuracy, and EfficientDet-

D0, in terms of time.  

I. INTRODUCTION 

Precision agriculture now employs a combination of 
techniques to identify pests and extend the life of trees. 
Identification and object detection can assist us in extracting 
important information about the number of species present in 
a picture while also reducing the manual labor of 
professionals. Now experts can concentrate on preventing the 
spread of insects and illness. The degree of individual tree 
infection can predict the insect population of an orchard and 
pest management programs can be triggered [1]. Manual insect 
identification is typically slow, inaccurate, tiring and prone to 
mistakes, which prevents large-scale use. The use of 
automated insect monitoring allows different degrees of tree 
diseases to be identified. Manual specimen identification takes 
a long time and requires the knowledge of a professional. 
Automation is essential for lowering costs and increasing 
production. To accurately identify insects of interest in digital 
images, computer vision and machine learning approaches are 
increasingly used. 
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Diseases and pests that spread quickly, on the other hand, 
cause crop loss and lower farmer revenue. Despite the 
knowledge that excessive pesticide use harms the ecosystem, 
farmers use large dosages of chemical pesticides throughout 
the crop growing season to minimize bug infestations and 
reduce crop loss from diseases and pests. 

Various features can be extracted from images to 
recognize insects such as the structure of the wings, color 
histogram, and the texture of the insect [2]. These features can 
be applied to a deep learning algorithm to learn the pattern of 
the insects. Also, authors in [3] noticed that deep learning in 
insect detection is unexplored. Deep learning has been widely 
employed in agricultural applications, including farmland 
mapping, crop image segmentation, and insect detection. 
Deep learning is a sophisticated machine learning approach 
that may be used to tackle a multitude of activities in image 
processing, remote sensing, and computer vision. In terms of 
deep learning, there are two types of neural networks: 
supervised and unsupervised neural networks. For image 
segmentation and data restoration, a supervised neural 
network is utilized. For the detection module to be trained, 
supervised classification involves learning information about 
the study region. The multispectral images acquired from 
sensors are subjected to unsupervised change detection 
systems. Preprocessing, semantic segmentation, and 
postprocessing are the three primary categories of these 
techniques [4]. 

A new neural network called PestNet [5] was used for 
multi-class pest detection. It combines both localization and 
classification and is significantly more complex than the 
neural networks for generic object detection. PestNet is 
organized into three primary components. The first, a new 
module for feature extraction and improvement, called 
channel-spatial attention (CSA) is designed to be fused into 
the convolutional neural network (CNN) backbone. The 
second is the region proposal network (RPN), which is used 
to provide region proposals as probable pest spots using 
feature maps derived from images. The third component, the 
position-sensitive score map (PSSM), is leveraged to replace 
fully connected (FC) layers for pest detection and bounding 
box regression. 

This paper’s purpose was to investigate some methods 
based on neural networks for the detection and classification 
of harmful insects for agriculture as the Halyomorpha Halys 
(HH). The neural networks that include multiple smaller 
networks were implemented and investigated. The networks 
used are the following: YOLO v5s, SSD with different 
backbones such as MobileNet V1, MobileNet V2, and ResNet-
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50, Faster R-CNN with ResNet-50 backbone, and 
EfficientDet-D0. 

The paper is organized as follows: Section I discusses 
related work concerning about application of neural networks 
used in precision agriculture; Section II proposes the analysis 
of neural networks as well as the approach to image processing 
with insects while Section III analyzes and discusses the 
obtained results and comparisons between methods. Finally, 
Section IV concludes the paper and outlines future directions. 

II. MATERIALS AND METHODS  

A.  Dataset used 

The images used both for the learning and testing phases 
are collected from the Maryland Biodiversity Project database 
[6]. Some examples of images selected from the Maryland 
database are presented in Figure 1. 

 

Figure 1. Samples from the database used. 

The database has over 11,000 species, including about 
3,700 species, and the work of more than 200 photographers 
and naturalists. For the CNN training, we manually labeled the 
data with the aid of the Computer Vision Annotation Tool 
(CVAT) created by OpenCV [7]. The application is free and 
allows us to export labels in a variety of formats. First, they are 
exported in YOLO 1.1 format, and then we made minor 
changes to match the YOLO v5 structure. Some annotation 
best practices [8] for object detection can be to fit the complete 
items and the boxes should be as narrow as feasible. The 
model’s ability to learn is limited if any items are missing. 
Also, we used some best practices for data collection [9]. It is 
usually preferable for the model to view the item in as many 
different contexts as possible since this allows it to learn more 
effectively. 

Rotation, scaling, blurring, mirroring, and other techniques 
were employed for data augmentation concerning HH images. 

A. Neural Networks Used 

The authors in [10] used a single neural network (YOLO) 
to process the entire picture. The image is divided into regions 
by the network, which predicts bounding boxes. Anticipated 
probabilities are used to weigh these bounding boxes. At the 
test time, it examines the entire image, thus its predictions are 
influenced by the image’s overall context. In contrast to 
systems like R-CNN, which need thousands of network 
evaluations for a single image, it provides predictions with just 
one.  

Another important neural network used for image 
segmentation is EfficientDet [11] launched by Google. In 
computer vision, model efficiency is becoming indispensable. 
The authors of [12] investigated neural network architecture 
design choices for object identification in-depth and proposed 
many significant enhancements to boost performance. They 
offer a weighted bi-directional feature pyramid network 
(BiFPN) for easy and quick multiscale feature fusion, and a 
compound scaling technique that scales the resolution, depth, 
and width of all backbone, feature network, and box/class 
prediction networks at the same time. They introduced a new 
family of object detectors called EfficientDet based on these 
improvements and enhanced backbones. 

The first CNN considered in our study was investigated 
YOLO v5s, developed in the Ultralytics PyTorch framework, 
which is easy to use and makes quick inferences. Because the 
model has learned to detect items in the early levels, we will 
just retrain the subsequent layers to understand what 
distinguishes sunglasses from other objects. We aim to 
transfer as much information as possible from the previous 
task the model was trained on to the new task at hand in 
transfer learning.  

We used YOLO v5s which is the small version of YOLO 
v5. YOLO v5s (Figure 2) unifies what was formerly a multi-
step process by performing both classification and prediction 
of bounding boxes for identified objects using a single neural 
network. As a result, it is extensively tuned for detection 
efficiency and can identify and categorize objects 
considerably quicker than two independent neural networks. 
It does this by repurposing standard image classifiers for the 
regression job of determining object bounding boxes. 
Because YOLO v5 is a single-stage object detector it contains 
three key components: backbone, neck, and head. This model 
summary is constructed from 191 layers. This model has 
7.3M parameters. We train for 100 epochs with a batch size 
of 16, an image size of 416×416, and a batch size of 16.  

 
Figure 2. YOLO v5s architecture. 
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The core objective of Backbone is to extract important 
features from an input image. The CSPNet (Cross Stage 
Partial Networks) backbone [13] is utilized in YOLO v5s to 
extract rich important features from an input image. The main 
purpose of Neck is to create feature pyramids. Feature 
pyramids help in the generalization of models on an objective 
scale. It aids in the identification of the same object in various 
sizes and scales. PANet (Path Aggregation Network) is 
applied as the neck in YOLO v5s to get feature pyramids. The 
middle/hidden layers employ the Leaky ReLU activation 
function, whereas the final detection layer uses the Sigmoid 
activation function. 

We trained the network for 100 epochs using transfer 
learning and achieved an mAP @ 0.5 IoU of 0.8689 (Figure 
3). The mAP is the area under the precision-recall curve, and 
it represents a measure of quality across all recall levels for 
single class categorization. The average prediction time is 55 
milliseconds. The mAP is calculated by averaging the AP for 
each class. The Mean Average Precision, or mAP score, is 
computed by averaging the AP across all courses and/or the 
total IoU threshold. mAP @ 0.5 IoU means the metric value 
mean Average Precision at Intersection over Union with a 
threshold of 0.5. 

 
Figure 3. mAP@0.5. 

The loss value is 0.01 after 100 epochs (Figure 4). 

 
Figure 4. Loss value in the training session. 

For the second network, we chose MobileNetV1. It is 
based on a simplified architecture that builds lightweight deep 
neural networks with minimal latency for mobile and 
embedded devices using depthwise separable convolutions. 
MobileNet is a CNN architecture (Figure 5) that is both 
efficient and portable, and it is employed in real-world 
applications [14]. To develop lighter models, MobileNets 
typically employ depthwise separable convolutions (DSConv) 
instead of the typical convolutions used in previous designs. 
Convolution layers that are depthwise separable are used to 
implement MobileNets. A depthwise convolution (DConv) 
and a pointwise convolution (PConv) make up each depthwise 
separable convolution layer. The net contains 28 layers if 
DConv and PConv are counted separately. The width 

multiplier hyperparameter can be adjusted to reduce the 
number of parameters in a conventional MobileNetV1 to 4.2 
million. One DSConv block is composed of DConv followed 
by PConv. 

A newer, similar net, MobileNetV2 architecture [15] has 
two types of convolutional blocks called Bottleneck residual 
blocks, which are presented in Figure 6. There are three layers 
for both blocks. The first layer is 1x1 convolution with 
activation function as ReLU6. The second layer is depthwise 
convolution and the third layer is another 1x1 convolution, this 
time simple, without linearity. 

 

Figure 5. MobileNetV1 Architecture (DConv - Depthwise Convolution, 
PConv - pointwise convolution, R - ReLu, B – Batch Normalization, S – 

Softmax layer, s - stride, p - padding). 

  

Figure 6. MobileNet V2 Blocks. 

The third network we tested is SSD. It is a single-shot 
detector and is intended for real-time object detection. Faster-
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RCNN creates boundary boxes using a region proposal 
network and then uses those boxes to categorize items. By 
removing the requirement for the region proposal network, 
SSD speeds up the procedure. SSD implements a number of 
enhancements, including multi-scale features and default 
boxes, to overcompensate for the decreased accuracy. These 
enhancements allow SSD to match the accuracy of the Faster 
R-CNN using lower quality pictures and increasing the speed. 
The average precision was 72.3% @ 0.5 IoU and 64% @ 0.75 
IoU. After 3000 steps of transfer learning, our loss was 
minimized to 0.08. We used a batch size of 8. 

The fourth network was EfficientDet [16] created by 
Google Brain. This neural network uses EfficientNet pre-
trained architecture as a backbone (Figure 7). We implemented 
the small-size EfficientDet-D0 using as the backbone the 
EfficientNet for feature extraction and the BiFPN (Bi-
directional feature network) for feature fusion (Figure 8). 

 

Figure 7. EfficientDet Architecture [16’]. 

EfficientDet is a neural network architecture for object 

detection designed to increase model efficiency. Across a 

wide range of resource limitations, this design is significantly 

more efficient than traditional design. 

We applied transfer learning to this model with our dataset 

and achieved a mean Average Precision @ 0.5 Intersection 

over Union of 0.63. The Average Precision @ 0.75 is 0.44. 

The model is trained on 512×512 image resolution. 
The fifth network is Faster R-CNN with ResNet50 as the 

backbone model (Figure 8). By processing the input images 
with convolutional and max-pooling layers, the Fast R-CNN 
architecture generates a convolutional feature map [17]. The 
feature maps are used by the region proposal network to 
predict a rectangular object with a score (probability). Input 
images with a resolution of 640×640/ RGB pixels are used in 
the actual implementation of the model. In place of the original 
ZF-NET and VGG-NET, a 50-layer ResNet was employed as 
the backbone (which used to be pretrained on ImageNet). 
ResNet has the benefit over VGG in that it is larger, implying 
that it has a greater ability to learn what is required. ResNet 
also takes advantage of residual connections and batch 
normalization, both of which were not available when VGG 
originally came out.  

The Faster R-CNN's fine-tuning and training convolutional 
neural networks have been shown to be effective visual models 
that can conduct precise insect counting in images. These 
techniques treat an image as a pixel matrix with a size (kernel) 
of (height-width-depth), where depth is the number of image 
channels (3 for RGB crop images). 

For the sixth network, we chose SSD with ResNet50 [19] 
as a backbone for extracting features. We used SSD as the 
fundamental network structure and replace the VGG16 
network on the inside with a ResNet50 network. The ResNet 
network is good at recognizing a variety of objects in relatively 

small data sets, according to the outcomes of the experiments. 
In terms of learning efficiency and accuracy, the proposed 
model surpasses existing neural networks. An SSD is made up 
of two parts: a backbone model and an SSD head. As a feature 
extractor, the backbone model is mainly a pre-trained image 
classification network. This is the ResNet50 network trained 
on ImageNet that has had the last fully linked classification 
layer removed. As a result, we have a deep neural network that 
can extract semantic meaning from an input image while 
keeping the image's spatial structure, although at a poorer 
resolution. 

 

Figure 8. Faster R-CNN with ResNet50 Backbone Architecture (adapted 

from [18]). 

 

 

Figure 9. SSD with ResNet50 Backbone Architecture [20]. 

III. EXPERIMENTAL RESULTS 

There are a total of 562 images in the created dataset 
which was divided into three parts: 70% training images 
(meaning 406 images), 10% validation images (meaning 45 
images), and 20% test images (meaning 111 images). We 
used Amazon Web Services to set up a Virtual Machine and 
deploy this software. Because CVAT is based on Docker, we 
chose NginX as the webserver and reverse proxy. NginX is a 
reverse proxy, load balancer, mail proxy, and HTTP cache 
that can be used as a web server. Predictions for the Yolo 
network using batch images from the testing dataset are 
shown in Figure 10. Examples of predictions of HH in 
different contexts for the six compared networks are 
presented in Figure 11. 

As it can see the error of detection and classification is also 
influenced by the context (background). If it is more complex, 
there is a higher probability of error. Thus, the EfficientDet 
and Faster R-CNN with ResNet50 Backbone are wrong in the 
classification for the image on the left (the cases g and l)), but 
they frame and classify the image on the right correctly. The 
detection confidence also takes higher values for the image on 
the right than the image on the left. The accuracy and testing 
(operating) time are presented in Table 1 for all the proposed 
networks. YOLOv5s, SSD with different backbones (such as 
MobileNet V1, MobileNet V2, and ResNet-50), Faster R-
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CNN with ResNet-50 backbone, and EfficientDet-D0. 
Performances like accuracy between 0.49 – 0.86 and time 
between 36 ms – 55 ms were obtained. The best results are 
obtained for YOLOv5s as accuracy (mAP@0.5IoU = 0.86) 
and for EfficientDet as operating time (36 ms). 

 

Figure 10. Predictions from YOLO v5s Test Dataset. 

 

 

a) YOLO v5s   
 HH confidence:91% 

b) YOLO v5s   
 HH confidence: 93% 

 

 

c) SSD/ MobileNetV1   
HH confidence: 89% 

d) SSD/ MobileNetV1   
HH confidence:  97% 

 

 

 

e) SSD/ MobileNetV2  
HH confidence: 94% 

f) SSD/ MobileNetV2  
HH confidence: 99% 

 

 

g) EfficientDet  
Other confidence: 56% 

h) EfficientDet  
confidence: HH 97% 

 

 

 

i) SSD/ ResNet50 
HH confidence: 53% 

j) SSD/ ResNet50 
HH confidence: 79% 

 

 

 

l) Faster R-CNN 
Other confidence: 56% 

m) Faster R-CNN  
HH confidence: 89% 

Figure 11. Example of test dataset predictions of HH in different contexts 

for the six compared networks. 

If we consider a majority vote on the decisions of the 
networks, we notice that the error in Figure 11 disappears: for 
the image on the left the voting score is 4/6, and for the image 
on the right the voting score is 6/6 so that in each of the two 
images detects HH.  

TABLE I.  NETWORK COMPARISON FOR ACCURACY AND    SPEED 

Model mAP@0.5IoU mAP@0.75IoU Time 

(ms) 

YOLOv5s 0.86 0.68 55 

SSD/ 

MobileNet V1 

0.72 0.68 48 

SSD/ 

MobileNet V2 

0.72 0.64 39 

EfficientDet-

D0 

0.63 0.44 36 

SSD/ ResNet50 0.59 0.49 46 

Faster R-CNN/ 

ResNet50 

0.49 0.29 53 

IV. CONCLUSIONS 

No relevant publications in the usage and detection of the 
Halyomorpha Halys insect were identified, according to the 
authors. We tested and evaluated many networks to discover 
which ones were the most effective at recognizing and 
categorizing this species. Deep learning algorithms have 
enabled us to build new image-based applications that would 
be impossible to execute using traditional image processing 
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approaches. The potential benefits of CNN are encouraging for 
their further application in smarter, more sustainable farming 
and food supply. In terms of various components, this system 
could be enhanced or modified. More current CNN designs, 
for example, may be pushed to the limits, including fine-tuning 
the CNN through a retraining process to make it more color 
sensitive. 

We will introduce new onsite shots to this dataset and 
retrain the network and it will be deployed on a UAV to 
generate real-time forecasts in next-gen farms. We conducted 
multiple pieces of training on several neural networks in order 
to determine which one is optimal for real-time prediction on 
a UAV. Because it blends precision and response time so 
effectively, we believe YOLOv5s is the ideal choice for 
transfer learning and deployment on embedded systems in 
UAVs for analyzing real-time images from next-generation 
precision agriculture. In future work, we intend to improve the 
methodology by a weighted fusion of decisions of the best 
classifiers based on neural networks. 
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