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Abstract— Halyomorpha Halys is a type of a dangerous 

insect for agricultural crops, in general, and especially for 

orchards. The detection and evaluation of their abundance are 

of great importance for starting the elimination procedure in 

ecological conditions. There are few studies conducted on insect 

detection using deep neural networks, but none are dedicated to 

the Pentatomidae family. The paper proposes an intelligent 

system for the detection of two similar species, Halyomorpha 

Halys and Nezara Viridula, the first being the dangerous one. 

As a novelty, the paper proposes an integrated intelligent system 

consisting of two interconnected neural networks trained on a 

custom data set using transfer learning. The first is configurated 

for insect detection (YOLO v4-tiny) and the second is dedicated 

to insect classification (EfficientNet-B3).  This approach has the 

goal of decreasing the values of false negative and false positive 

errors, thus increasing the detection performance. 

Keywords—image processing, deep convolutional neural 

networks, transfer learning decision fusion, insect detection, 

insect classification 

I. INTRODUCTION  

The problem of detecting and classifying harmful insects 
is of major importance for precision agriculture, where this 
aspect is essential for environmental protection, preventing 
crop infestation, combating pests, improving the production 
ratio per cultivated area, and food safety [1]. This involves 
accurate classification and rapid recognition of pests on a large 
scale and with accuracy to be able to intervene effectively both 
to limit the spread of infestation and to protect the 
environment through the correct use of insecticides. This 
context is favored by technological progress in recent years 
and the implementation of modern methods involving 
complex artificial vision algorithms that use deep learning, 
easy access to knowledge bases, and extensive data sets. All 
of this provides a new perspective on the use of modern 
technology and algorithms for the recognition and control of 
insects harmful to agricultural crops. 

 The problem of insect detection using deep neural 
networks for images acquired from UAVs (Unmanned Aerial 
Vehicles) has been addressed in some papers in recent years 
[2]. Thus, testing the use of the Inception-V3, Resnet-50, and 
VGG-19 networks [3] led to the conclusion that fully training 
them on sets gives poorer results than transfer learning and 
training starting from pre-trained models on large sets and 
various data [4], [5]. The authors of [4] conducted studies on 

image segmentation methods by fragmenting them into 
smaller regions that can later be properly analyzed. 

A UAV-acquired dataset for 15 insect classes and one null 
class (containing leaf images on soybeans) was used in [5], 
with a total of 2792 images. The aim of the study was to 
correctly classify each existing class of insects. In this sense, 
the architecture models of Deep Convolutional Neural 
Networks (DCNN) like Inception-V3, ResNet-50, VGG-16, 
VGG-19, and Xception were used. These DCNNs were 
initially pre-trained with ImageNet. All the higher levels were 
kept, only the output levels being included for retraining. Later 
these were reconfigured and optimized, thus achieving the 
transfer learning. The results obtained were good, reaching a 
maximum accuracy of up to 93.82% for Resnet-50, 91.87% 
for Inception-V3, 91.80% for VGG-16, 91.33% for VGG-19, 
and respectively 90.52% for Xception. Results recorded 
without learning transfer were 50% lower. 

In [6], a study was carried out on 7 DCNNs. (VGG-16, 
VGG-19, ResNet-50, Inception-V3, Xception, MobileNet, 
and SqueezeNet) pretrained on a dataset containing 40 insect 
classes. The study concluded that the efficiency of retraining 
networks is directly proportional to the amount of data. The 
sum of maximum probabilities is proposed as a voting 
method, and to avoid the problem in which several classes 
obtain the same score, the GAE (Genetic Algorithm 
Ensemble) algorithm was used, which proposes the initial 
weights of the network as a voting method. Following the tests 
performed, a maximum accuracy of 97.06% was obtained for 
Inception-V3, 97.93% for Xception, and 97.39% for 
MobileNet. 

The method proposed in [7] used a fast insect 
identification technique by combining two architectures: one 
for detection and proposal of regions of interest and another 
for validation through a classifier. 

As a result of the study of the recent works analyzed, the 
efficiency of the learning transfer, in conjunction with the 
optimization of the hyperparameters, was noted. The idea of 
decision fusion to increase detection accuracy is emphasized. 
To this end, this paper proposes the implementation of an 
intelligent system for the detection and recognition of harmful 
insects, especially, Halyomorpha Halys (HH) and Nezara 
Viridula (NV), belonging to the same family – Pentatomidae 
[8], in orchards through the transfer learning of deep 
convolutional neural networks. As a novelty, the paper 



proposes an integrated intelligent system consisting of two 
neural networks connected with the role of reducing false 
positive and false negative errors for the detection of insects 
such as HH and NV (Fig.1). 

  

(a) (b) 

Fig. 1. Detected insects: (a) Halyomorpha halys; (b) Nezara viridula.  

II. MATERIALS AND METHODS  

A. Data Bases Used 

The paper improves the classification and detection of two 
or more classes of insect pests by using state-of-the-art deep 
neural network architectures pre-trained on large datasets, 
ImageNet and MSCOCO, and applying transfer learning on a 
custom data set [6]. 

For the two studied insect classes, images belonging to the 
site [9] were used for the training set (marked DS1). They 
come from various sources presenting some frame acquisition 
flaws (focusing, lighting, point of view, various resolutions, 
and aspect) which could impact CNN accuracy as pointed out 
in [2] and [5]. Images contain insects in developmental stages 
ranging from instar 3 to adult (instar 6). The images of the test 
set were also acquired from the natural habitat of the studied 
insects. Some of these come from the University 
POLITEHNICA of Bucharest premises (marked DS2), 
another part is acquired from UAVs (Unmanned Aerial 
Vehicles) in Romania and Italy (marked DS3), and another set 
from Comana Natural Park (Romania) (marked DS4). The 
images were taken at a distance of about 50 cm and with the 
use of automatic and macro shooting modes to better highlight 
the insect. Information on the contents of the data set can be 
found in Table I. The latter is used for prediction testing after 
the training process is completed. In Fig. 2 two samples of HH 
in the natural environment from the DS2 and DS3 datasets are 
shown. Data acquisition was done taking into consideration 
the procedure from [5].    

TABLE I.  CONTENT AND STRUCTURE OF DATA SETS USED   

Data 

Set 

HH number NV 

number 

Using Resolution 

(pixels) 

DS1 730 756/ Training/ 

Validation 

240×192- 

2932×3008 

DS2 79 - Testing 5184×3888 

DS3 130 - Testing 5184×3888 

DS4 401 55 Testing 4608×3456 

Both images used for training the models and for testing 
them were subjected to pre-processing operations, such as a) 
Resizing images according to the neural networks’ input; b) 
Cropping images or centering objects of interest; c) Contrast 
normalization. 

Indexing of all images and creating lists of data needed to 
train the network are created automatically, generating lists of 

images for training (70%), validation (20%), and testing 
(10%). 

  

(a) HH from DS2 (b) HH from DS3 

Fig. 2. Samples from the test datasets.  

Each region of interest corresponding to the appearance 
of one or more insects in the images was labeled using the 
Labeling application, made in the Python programming 
language. After marking, the class index (0 for HH and 1 for 
NV respectively), as well as the coordinates of the square of 
the region of interest, were automatically saved for each 
individual image in a label file. 

To augment the data set with the aim of avoiding the 
phenomenon of overlearning and achieving an optimal 
generalization [6], several augmentation procedures were 
used through photometric and geometric distortion: angle, 
clipping, mirroring, saturation, exposure (luminosity), hue, 
and mosaic (combining four images into one). 

B. Neural Networks Used 

An extensive study was carried out on the existing models 

of architectures (backbone) of the latest generation and with 

special results in competitions with the role of evaluating the 

accuracy/rate of recorded errors [2]. The study was carried 

out in two directions: 1. Image Classification: Transfer 

Learning of Deep Neural Networks and reconfiguring the 

structure and hyperparameters. 2. Detecting insects of interest 

from the images and framing the ROI (region of interest) with 

a rectangular outline, displaying the belonging class as well 

as the percentage prediction (confidence) score. This is 

accomplished by transfer learning, structural reconfiguration, 

and hyperparameter optimization. 

The following deep convolutional neural network 

architectures are proposed for analysis: 

• For detection: YOLO v4 – DarkNet [10], Scaled-

YOLOv4 [11] by transfer learning. 

• For classification: EfficientNet B3 [12] by transfer 

learning. 

The configuration of the YOLO v4 architecture started 
from a 137-level pre-trained model with a large data set – 
MSCOCO, containing 91 classes. The lower levels were 
reconfigured according to the particularities of the objects to 
be detected by introducing two classification levels 
corresponding to the two species of insects that are the subject 
of the study: HH and NV, from the data, set created especially 
for this purpose. The network thus trained is optimized for 
identifying and framing the objects belonging to the two 
classes of objects in a rectangular box and displaying the 
detection score related to the class as well as its label, using 
the inference process based on the prediction made. The 
model thus reconfigured contains 162 layers. The flowchart 



of the entire transfer learning process is depicted in Error! 
Reference source not found.. 

 

Fig. 3. Transfer learning process for insect data set. 

The Scaled-YOLO v4 architecture [11] was chosen to 
train the HH and NV insect detection model because it is 
focused on the optimal combination, automatically, for each 
stage of the parameters depth, initial width, slope, 
quantization, the ratio of linearization layers (bottleneck), and 
group width, to achieve maximum efficiency. The tiny model 
also considers the resources of the working environment 
(especially for local training, not the cloud). Numerous 
optimizations are made, including memory and bandwidth 
allocation. From the point of view of functionality, the 
functions regarding the order of operations within the layers 
are optimized. To reduce the size of the feature map, an 
OSANet (One-shot aggregation) backbone (Fig. 4) is used, 
which offers greater efficiency than DenseNet-type dense 
blocks. 

 

Fig. 4. OSA (One Shot Aggregation) aggregation method. 

This is the first step in identifying the two insect pests. 
The framed regions of interest are automatically extracted 
and saved to later be analyzed using a DCNN (EfficientNet) 
based classifier to reduce errors. 

EfficientNet [12] is a model made by Google, with an 
innovative concept, to balance three essential parameters in 
structuring a DCNN: depth, width, and resolution. It should 
be noted that EfficientNet is very well behaved providing top 
results (in terms of accuracy) while maintaining a lower 
resource requirement by using fewer parameters. The 
scalable structure of this architecture allows the division into 
8 performance models, which are designed, depending on the 
complexity, from B0 to B7. Taking this aspect into account, 
the B3 module was proposed for use as a classifier. 

In order to carry out the learning transfer, the dataset 
containing the two classes of insects was prepared. A tensor 
level augmentation method is proposed that will be applied 
so that a balanced number of images can be obtained for each 
class. Higher levels are blocked in the training process to 
maintain good generalization ability of the model acquired 

from training on the ImageNet set. The output levels, with the 
role of classification, are eliminated, being introduced new 
layers correspond to the classification of the two species of 
insects. 

C. Hardware Used 

For the DS2 test dataset, image acquisition was performed 

with a 16.1MP Nikon Coolpix P510 camera and a 12MP 

dual-camera Samsung Galaxy Note9 phone. For the DS3 test 

set, a DJI Mavic2 Pro drone equipped with a 20MP 

Hasselblad L1D-20c camera was used. 

Image processing and dataset creation were performed 

using a Dell Precision Portable Graphics Station with an I7-

9750H processor. Programming and training of the neural 

networks were performed using two Clevo portable graphics 

stations with custom configurations (Table II). 

TABLE II.  HARDWARE USED FOR CNN IMPLEMENTATION    

Portable graphics 

station 

Module Characteristics 

Dell Precision M7540 CPU I7-9750H@2.6GHz-4.5GHz 

Intel UHD Graphics 630 

GPU Nvidia Quadro T2000 

Clevo 15 (P15) CPU I7-9750H@2.6GHz-4.5GHz 

Intel UHD Graphics 630 

GPU Nvidia GTX 1660Ti 

D. Software Used 

The software content is made using MS Windows 10 Pro 
and Ubuntu 20.4 operating systems. NVidia research 
development drivers and libraries are used for graphics and 
tensor processing. The programming language in which the 
code necessary for each stage of the work development and 
testing is written in Python, and the integrated development 
environment, PyCharm. The development platforms and their 
related APIs used to train the networks are contained by 
TensorFlow and Keras. All frameworks (wrappers) and 
libraries used for developing applications and training 
networks are written specifically for the Python programming 
language. 

E. Proposed System 

After the tests were carried out, it was found that for 
images at a high resolution but with a low aspect ratio of the 
object of interest, as in the case of the detection and 
identification of harmful insects from trees in orchards, many 
false-negative and false-positive detections are obtained. This 
happens because of the positioning of the insects in the trees: 
on the leaves, on the fruits, on the branches, in the shade or 
light, at a smaller or larger distance from the camera. To 
reduce false negative errors, it is proposed to generate a 
pyramidal window capable of extracting regions by applying 
them to scale. To make time and data flow more efficient, the 
image processing will be tensorial, so that the segmented 
regions of interest will be transmitted directly to the detector, 
without being exported. Fig. 5 illustrates the operating 
principle of the sliding window pyramid. For each uploaded 
file, up to a maximum of 972 (constructively imposed) regions 
extracted from the original image are generated, depending on 
the desired detection accuracy. This is done by generating a 
window of variable size that sweeps over the source image 
with a defined step at the beginning and at the end of the stroke 
which changes the scale factor. 



 

 

Fig. 5. The pyramidal ROI segmentation mechanism. 

A mechanism for combining the two methods in an expert 
system capable of detecting the two classes of insects with 
good accuracy is shown in Fig. 6. After performing the 
detection using the trained YOLO v4-tiny model for the two 
classes of insects, HH and NV, the source images are marked 
and saved separately. The detected objects from the images 
are segmented so that later, in the case of a positive detection, 
they are analyzed using the EfficientNet-B3 classifier, and 
otherwise, for null detections from the source image, it is sent 
to the pyramid segmentation mechanism to extract new 
regions of smaller size to be reanalyzed by means of the 
Scaled-YOLO v4-tiny detector. Another advantage of using 
this mechanism is provided by segmenting the original image 
into sub-regions, in this way no details are lost as happens 
when scaling the original image to match the resolution of the 
input layer of the detector. Through this process, the aim is to 
reduce erroneous results, but also to improve the detection 
score and implicitly the precision. 

 

Fig. 6. The principle of operation of the proposed mechanism. 

The images processed with the detector based on 
YOLOv4 are analyzed according to the detection result: for 
the presence of insects, they are classified using the 
EfficientNet-based network for evaluation, and for non-
detections or results that do not meet the imposed parameters, 
the mechanism of pyramidal segmentation. The scheme 
describing the operation mode of the intelligent system for 
insect detection and the steps taken to validate and optimize 
the results is presented in Fig. 7. 

 

Fig. 7. The principle of operation of the proposed mechanism. 

F. Result Indicators 

Several metrics such as specificity, sensitivity, and 
accuracy were considered for the evaluation of convolutional 
neural networks (Table III). The meaning of the notations are 
as follows: TP - true positive cases, FN - false negative cases, 
TN - true negative cases, FP - false positive cases. 

TABLE III.  METRICS USED FOR CNN EVALUATION    

Name Abbreviation Formula 

Recall  

(True Positive Rate) 

TPR 
 TPR =

TP

TP+FN
 

Specificity  

(True Negative Rate) 

TNR 
𝑇𝑁𝑅 =

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

Precision  

(Positive Predictive 

Value) 

PPV 

𝑃𝑃𝑉 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Accuracy ACC 
𝐴𝐶𝐶 =

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

F1-score F1 
𝐹1 =

2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

III. EXPERIMENTAL RESULTS  

Following the tests performed on the DS 2 and DS 3 data 
sets, it was observed that the detection accuracy is strongly 
influenced by the sharpness of the acquired images, the correct 
focus of the regions of interest, as well as the object/image 
ratio. In the case of preprocessing the test image and 
fragmenting it into several sub-images (patches) the detection 
rate was improved as the proportion of the region of interest 
to the background plays an important role in the network's 
decision. Also, in the case of false-positive (FP) detections for 
NV, simultaneously with HH true-positive (TP), the score for 
HH was always higher. 

For the Scaled-YOLO v4 custom model, the best model 
has been obtained for the training scenario of 400 iterations 
with the SAM SGD (Sharpness-Aware Minimization 
Stochastic Gradient Descent) optimization algorithm (Fig. 
8.a). For the classifier based on the EfficientNet-B3 model, 
after training for 30 iterations, the accuracy curve in Fig.8.b 
was obtained.  

Table IV shows the calculated result indicators for the 
validation data set. The data input resolution is 300x300 
pixels, corresponding to the input level of the EfficientNet-B3 
architecture. The number of images was 200: 100 for HH and 
100 for NV. Similarly, in Table V, the result indicators were 
calculated for the Scaled-YOLO v4-tiny model, optimized 
with the SAM SGD algorithm. 



  

 
 

(a) (b) 

Fig. 8. Performances of the networks obtained during training. (a) Scaled-

YOLOv.4: mAP plot for iterations 50–400 (b) EfficientNet B3: accuracy 

graph.  

In Table VI, the result indicators were calculated for the 
combined Scaled-YOLO v4-tiny model with EfficientNet-B3 
and pyramidal ROI segmentation mechanism. 

TABLE IV.  TEST RESULTS FOR EFFICIENTNET-B3 MODEL     

CLASS PPV TPR F1 Images 

0 (HH) 0.92 0.86 0.88 100 

1 (NV) 0.91 0.93 0.92 100 

ACC 0.905 

TABLE V.  TEST RESULTS FOR SCALED-YOLO V4-TINY     

CLASS PPV TPR F1 Images 

0 (HH) 0.64 0.75 0.69 100 

1 (NV) 0.81 1 0.89 100 

ACC 0.79 

TABLE VI.  TEST RESULTS FOR COMBINED STRUCTURE     

CLASS PPV TPR F1 Images 

0 (HH) 0.94 0.90 0.92 100 

1 (NV) 0.84 1 0.92 100 

ACC 0.95 

 

Some examples for the DS 2 test set are given in Fig. 9, 
for one (cases HH 77, HH 100, HH99, and HH 93) or two 
insects (cases HH95/99 and HH 95/96) in the image. Fig. 10 
a) and b) present some results after applying the classification 
mechanism. 

   
HH= 77         NV= 35 HH= 100         NV= 2 HH= 95|99       NV= - 

   
HH= 95|96  NV=13|2 HH= 99         NV= - HH= 93         NV= 12 

Fig. 9. Examples of insect detection using Scaled-YOLO v4-Tiny (DS2). 

 

 

(a) 

 

(b) 

Fig. 10. Examples of insect classification using EfficientNet-B3 (DS1): (a) 

NV and (b) HH.  

It was observed that most of the FP detections for the NV 
class in the DS 2 set were for HH. To reduce these FP 
detections, the proposed algorithm was applied, by reducing 
the tolerance threshold, partitioning the image into sub-
images, and re-evaluation by returning the threshold to a 
higher value (Fig. 11).  

  

(a) (b) 

  

(c)                                                         (d) 

  

(e) (f) 

Fig. 11. Exemplification of the detection mechanism by the proposed 

method (DS2). (a) Source image - no object detected (FN), (b) NV= 2% FP 
detection, (c) Activation of the EfficientNet network after the split, (d) 

HH=1%, (e) HH=73%; HH=2%,NV=3% « 70%. 



The test results were obtained under the following 

conditions: the detector will lower the tolerance threshold to 

40% (it will exclude detections with scores < 40%) and on 

the next re-evaluation it will raise the tolerance threshold to 

70% so that only images with a score of detection greater than 

70% to be considered. For the classifier, the minimum 

threshold was imposed for all predictions, regardless of class, 

to be 50% (Table VII). Regarding the mechanism of dividing 

the initial image by sliding window, it was imposed that the 

displacement step of the window should not be less than 90% 

of its size, regardless of the scale in order not to repeat regions 

and introduce new disturbing factors into the system. It is 

assumed that segmenting the region of interest will be easier 

to identify. 

TABLE VII.  VALIDATION CRITERION FOR FUSED DECISION 

Criterion Rule Result 

Prediction score >50% HH=HH/NV=NV VALID 

Prediction score <50% 

(for both classes) 

HH≠HH/NV 

NV≠NV/HH 

INVALID 

FP 

Prediction score >50% 

(for opposite class) 

HH=NV/NV=HH FP 

(class err.) 

IV. CONCLUSION  

Through its flexibility, the proposed model can serve as 
detection, classification, monitoring, and evaluation tool for 
classes of insect pests in organic agriculture. The proposed 
solution can reduce false-positive (FP) or false-negative 
results. The empirical character of the realized deep 
convolutional neural network models preserves a margin of 
continuous improvement of the parameters, and through the 
obtained results contributes to the composition of both a 
theoretical and practical basis for the development of an expert 
system for the detection of harmful insects for extended areas 
and in - a short time interval. 

In the future, it is proposed to develop a two-stage model, 
which uses a voting mechanism based on weights, and real-
time data analysis for each subsystem of the proposed 
detector. 
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