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Abstract—Timely pest detection and identification is 

critical as part of modern agriculture. Halyomorpha 

Halys is a prevalent pest with proven harmful impacts on 

numerous crops and agricultural regions. The paper 

proposes an efficient model to improve the detection of 

two invasive stink bugs: Halyomorpha halys and Nezara 

Viridula. Automatic detection of these two bugs is 

essential in various fields, such as precision agriculture 

and integrated pest management. The high performances 

obtained in the present study open new perspectives for 

the further development of insect pest detection systems 

and can serve as a basis for future modifications and 

improvements of these models.  
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I. INTRODUCTION 

Two invasive stink bugs: Halyomorpha halys (HH) 
(brown marmorated stink bug) and Nezara Viridula  
(NV)(southern green stink bug), were introduced relatively 
recently in Europe. These species are very polyphagous and 
cause important damage to crops, orchards, and ornamental 
plants [1], [2]. To reduce economic damages produced by 
insects it is very important to detect and monitor them in the 
early phase, and then, use professional expertise to 
ecologically destroy these insects. Since the use of insecticides 
can have a negative impact on the environment and human 
health, an integrated management of pests through biological 
control is preferable. 

Today, machine learning technology and, especially, 
neural networks are recommended to identify these insect 
species and their abundance to prevent the diseases they can 
cause as well as to monitor their spread in crops or orchards 
[3]. The creation and organization of the dataset followed the 
introduction of digital images illustrating the pest insects in 
various poses which were taken from public data sets, 
although in real applications particular databases adapted to 
the specifics of the application must be created and used  

Although few, there are several recent research articles [4], 
[5], and international projects [6] that focus on HH detection 
using convolutional neural networks and UAVs. 

Paper [3] investigates the potential of deep learning 
models to classify pest species with high interspecies 
similarity and intraspecies variability. It introduces a modified 
SSD model with an IoU value of 70.2% as a performance 
indicator for detecting four species of Phyllocephalidae 
insects. This approach has the potential to reduce costs, 
enhance performance, and increase scalability in pest 
monitoring and analysis. Finally, it was noted that monitoring 
the Pentatomidae family of pests is crucial in modern 
agriculture for identifying variations in infection levels and 
enhancing integrated pest management strategies. The study 
[4] emphasizes the necessity of early pest detection and 
identification in precision agriculture, with a particular focus 
on the common pest Halyomorpha Halys and its harmful 
impact on crops. To recognize the insect pests, four advanced 
neural networks were used in the study. Despite the inherent 
difficulty of automated insect identification in natural 
contexts, without the use of traps, the results are encouraging. 
The study of time and accuracy metrics provided validation 
accuracy values ranging from 85% to 88%, demonstrating that 
applying deep learning architectures for pest detection and 
classification in agriculture has tremendous potential and 
development chances. The study [5] focuses on detecting the 
brown marmorated stink bug (BMSB), a pest in fruit 
production. It compares three sophisticated image recognition 
and classification models: MobileNetV2, Xception, and 
EfficientNet. These models were slightly customized for the 
task and achieved good accuracy results, ranging from 96% to 
97.5% in BMSB detection. 

The highlighted information from the previous studies is 
that early insect pest detection, particularly focusing on 
Halyomorpha halys (the brown marmorated stink bug), is a 
significant and compelling research topic. The invasive nature 
of this pest and its ability to cause substantial damage to 
various crops underscores the importance of developing 
advanced detection methods. Deep learning approaches, as 
demonstrated in the discussed research, hold great promise in 
addressing this agricultural challenge by improving accuracy 
and efficiency in pest monitoring and management. Early 



insect pest detection using deep learning techniques, with a 
specific focus on Halyomorpha halys, is a highly relevant and 
valuable area of research in modern agriculture. The paper 
presents some performant neural networks adapted for HH 
and NV detection in precision agriculture. Considering that 
these insects are relatively small compared to the images 
obtained in the field, the obtained performances are good.  

II.  MATERIALS AND METHODS 

A.  Datasets Used 

The Xie. Dataset [7] and the Maryland Biodiversity 
Project database [8] were chosen for the dataset of the present 
work. Representative images from the datasets were taken for 
the reference insects Halyomorpha Halys and Nezara 
Viridula. Related to the topic of insect pest identification, the 
mentioned dataset was divided into 3 directories for training, 
validation, and testing. The ratio for organizing the data set 
aimed at percentages of 70% for testing, accumulating 764 
images, 20% for validation - 109 images, and 10% for testing 
- 54 images. The total dataset for this paper comprised 927 
images, with 488 images categorized under the Halyomorpha 
Halys class and 439 images representing Nezara Viridula. As 
input part for CNNs images chosen were resized to 224x224 
pixels, using RGB images.  

This dataset organization pattern is a typical practice for 
training and evaluating deep-learning models based on 
working with digital images. Finally, the representative 
classes that are attached to the data set were created by the 
acronyms of the two insects - we have two classes HH and 
NV. Examples of representative images for the mentioned 
dataset can be viewed in Fig. 1 for both datasets queried, 
Maryland and Xie. Dataset. Since the number of 
representative images for the organized pest classes in the 
dataset of the present work is relatively small, it was aimed to 
introduce augmentation operations for the size and robustness 
of the final dataset. For this paper, image augmentation 
techniques involved making controlled modifications to the 
input images gathered, and they included: flipping 
horizontally and vertically, crop, rotation between -15° and 
+15°, shear ±10° horizontal, ±10° vertical, brightness: 
between -25% and +25%, blur: up to 1.5px, random noise (salt 
and pepper): up to 2% of pixels. In this sense, image 
augmentation was chosen as having a positive impact on 
image classification tasks creating improved generalization, 
robustness, data efficiency, and translation invariance. 

 
Fig. 1. Example images from the dataset created. 

As a result, the CNN is exposed to a wider range of 
variation in the data, helping each CNN model to learn based 
on robust and generalized features. Translation, rotation, and 
cropping are augmentation approaches that assist CNNs in 
learning translation-invariant features. This is necessary for 

identifying insects in various locations within a picture. 
Finally, CNNs grow more resilient to numerous 
transformations, noise, and variances found in real-world 
settings through training on augmented data. This improves 
the model's ability to handle a variety of lighting situations, 
views, and object orientations. Example images from the 
augmented dataset for both classes are shown in the figure 
below. Fig. 2 shows representative samples that have 
undergone various data augmentation techniques to enhance 
the diversity and robustness of the dataset. 

 
Fig. 2. Example images from the augmented dataset. 

It is important to note that the images chosen to create the 
data set illustrate real poses of the reference insects, and no 
artificially generated images have been introduced as is the 
case in various approaches to working with digital images. 
The motivation of this fact denotes the orientation of the 
present work toward the automatic detection of harmful 
insects in real frames, usually represented by orchards and 
agricultural areas. 

B. Neural Networks Used 

The performance comparison of multiple ImageNet [9] 
pre-trained models was pursued. For the present study, the 
models used followed the implementation of several 
architectures as follows: VGG19 with Batch Normalization 
(BN) [10], ResNet152 [11], InceptionResNetV2 [11], 
DenseNet201 [12], Xception [13], MNasNet [14], 
NasNetLarge [15], and ConvNextLarge [16]. These models 
differ in depth, complexity, and architectural innovations, 
making them appropriate for a variety of applications and 
resource restrictions, especially as new trends for the modern 
digital agriculture [17].  

Starting with the first one, VGG19 is a 19-layer deep 
CNN architecture. To stabilize and speed training, batch 
normalization is used. It features a straightforward and 
consistent design with 3x3 convolutional layers. Although 
useful for feature extraction, it may be computationally costly 
[10]. Next, ResNet152 is part of the ResNet (Residual 
Networks) family. This kind of architecture introduces skip 
connections named residual blocks, which aid in the 
resolution of the vanishing gradient problem. In general, 
ResNets are beneficial for highly deep networks, allowing 
hundreds of layers to be trained [11]. InceptionResNetV2 
combines Google's Inception and ResNet concepts. It 
improves feature extraction by utilizing residual connections 
and inception modules. Suitable for applications requiring 
both depth and feature variety [11]. 

DenseNet201 is a deep neural network with a special type 
of dense layer connection. This model promotes feature reuse 



and mitigates the vanishing gradient issue. In terms of 
parameter utilization, it is quite efficient, and it is suitable for 
jobs requiring a small amount of data and resources [12]. 
Another model, Xception is an abbreviation for "Extreme 
Inception." It employs computationally efficient depthwise 
separable convolutions. With fewer settings, this model 
achieves competitive performance, and it is especially handy 
when computing resources are constrained [13]. 

In the same topic, MNasNet is a neural network design 
that is mobile-friendly. Designed for low-resource mobile 
and embedded devices, MNasNet is efficient and lightweight 
while retaining high accuracy for a wide range of operations 
[14]. NasNetLarge is an architecture for convolutional neural 
networks that stands for "Neural Architecture Search 
Network Large." It is a member of the NasNet model family. 
NasNetLarge was created utilizing the NAS approach, which 
includes searching for the optimum neural network 
architecture for a given job. This automated architectural 
search approach aids in the development of efficient and 
effective models. It strikes a good mix between model size 
and performance, making it an excellent choice for 
applications with limited resources [15]. Finally, part of the 
novel architectures, ConvNeXt combines principles from the 
transformer architecture into classic convolutional neural 
networks such as ResNet. The objective is to improve CNN 
performance for computer vision tasks. To accomplish this 
improvement, many major adjustments were made, including 
changes to the stem, the inclusion of inverted bottlenecks, 
changes to activation functions and normalizing layers, and 
the addition of distinct downsampling layers [16]. ConvNeXt 
combines the advantages of standard CNNs and transformers 
while requiring fewer parameters and computing resources, 
giving it a high-performance choice for a wide range of 
computer vision applications. This novel technique enables 
for straightforward deployment while outperforming 
conventional models [16]. 

C. Hardware and Software Used 

To ensure the reliability and replication of our results, we 
used a custom system setup for our tests and research on deep 
learning for insect pest detection. Our tests were carried out 
on a computer running the Ubuntu 20.04 LTS operating 
system. The Python programming language, version 3.10.12, 
was used as the primary scripting language for our study. An 
Intel Core i9-11900K CPU, noted for its speed and multi-core 
capabilities, served as the system's computational backbone. 
PyTorch, version 2.0.1, was used for our deep learning 
research. PyTorch was chosen for its adaptability, broad 
community support, and full collection of deep-learning 
research tools. Next, we used the computing capability of an 
NVIDIA GeForce RTX 2080 Ti GPU with 11020MiB of 
video memory and CUDA to speed up the training and 
inference procedures of our deep learning models.  

III. EXPERIMENTAL RESULTS AND DISCUSSION 

To note the results and discussion for the models used, 
one method is to use these models as feature extractors first, 
and then train a classifier on top of the retrieved features 
using a subset of the dataset. This method can aid in 
determining which model has the best feature extraction 
capabilities. Following that, each model may be fine-tuned 

using the complete dataset and its performance compared. To 
avoid overfitting during training, techniques like data 
augmentation and dropout were used. Each network was 
evaluated across a number of epochs, and the accuracy value 
attained on the validation dataset was noted for each.  

For the evaluation of the models and part of the 
comparative study, several settings were followed in studying 
the impact of the chosen architectures. Starting from the 
created data set, convolutional neural network models were 
trained and evaluated for the automatic identification of the 
two classes HH and NV. Implementing numerous CNN 
models with transfer learning and fine-tuning is one 
technique for enhancing the accuracy and efficiency of insect 
categorization operations. Transfer learning is the process of 
fine-tuning a pre-trained CNN model for a specific task. This 
is performed by adjusting the weights of the pre-trained 
model to reflect the new dataset. As part of the training and 
evaluation, the model is moved to the GPU device, and the 
training is performed for a total of 30 epochs. As the 
optimization criteria, the Cross-Entropy Loss is utilized, 
which is often used in classification tasks to assess the 
difference between predicted and actual class probabilities. 
The neural network's parameters are optimized using 
Stochastic Gradient Descent with a learning rate of 0.001 and 
a momentum of 0.9. During training, the learning rate is 
modified using a step-wise decay technique. This aids model 
convergence by gradually reducing the step size for 
parameter updates. These options together configure the 
neural network training procedure. 

 
Fig. 3. VGG19 BN Results  

 
Fig. 4. DenseNet201 Results  

 
Fig. 5. Xception Results  



 
Fig. 6. ConvNeXt Base Results  

The validation accuracy values obtained varied from 94% 
to 98%, indicating that deep learning architectures have a 
considerable influence and provide chances for advancement 
in pest detection and categorization. Table 1 displays the 
metrics for the highest validation accuracy achieved. The 
successful performance of such models in the task of 
recognizing the harmful insects from digital photos is 
observed using the initial set of data and the results obtained. 
To improve performance, the models may be tuned on a large 
data set in the future. Furthermore, new models may be 
combined, and approaches like combining neural networks 
utilizing different ensemble methods can be used to generate 
fusion models by integrating decisions of independently 
trained and evaluated models.  

TABLE I.  VALIDATION ACCURACY METRICS FOR THE BEST MODELS 

Model used Best accuracy value 

VGG19 BN 96.83% 

DenseNet201 95.17% 

Xception 94.83% 

ConvNeXt Base 98.00% 

IV. CONCLUSIONS  

This study optimizes and compares deep neural networks 
for the identification and categorization of the pests 
Halyomorpha Halys and Nezara viridula with a focus on the 
HH pest. The models and architectures utilized have the 
potential to advance insect identification and categorization, 
notably in agriculture. The good loss and accuracy results 
indicate that these models can be successfully used to 
automate pest monitoring and identification activities. More 
instances can be added to the dataset to improve the work. 
Furthermore, in the future, approaches such as model fusion 
might be investigated and used to optimize architectures and 
enhance performance, especially for increasingly complicated 
structures. Finally, the most effective model for insect pest 
detection, particularly HH, would be determined by the unique 
demands and limits of the real-world application, as well as 
the availability of data and computing resources. Based on the 
present results, the models can be developed along the way to 
improve the identification and automatic detection part, 
considering real scenarios and personal contributions on the 
applicability part. 
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