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Abstract. Halyomorpha Halys, commonly known as the brown marmorated stink 

bug, is an invasive insect that causes significant damage in orchards. Neural net-

works have the potential to improve insect pest detection and classification in 

modern agriculture, which can lead to better pest management. The detection of 

these insects in orchards using drones imposes special problems because the im-

ages are taken from a limited distance and the foliage of the trees makes detection 

difficult. In this article, we studied the possibility of detecting the respective in-

sects using the latest generation YOLOv8 neural networks and compared the re-

sults with the well-known YOLOv5 network. The results were obviously better 

for YOLOv8 (accuracy of 94.55%). However, satisfactory results were also ob-

tained in the case of YOLOv5 (accuracy of 90.91%).   

Keywords: Convolutional Neural Networks, Harmful Insects, Pest Detection, 

Orchard.  

1 Introduction 

The insect pest causes damage to crop, livestock, forests, or other natural resources, 

causing economic losses or ecological imbalances. Halyomorpha Halys (HH), com-

monly known as the brown marmorated stink bug, is a species of insect in the family 

Pentatomidae. It is native to East Asia, including China, Japan, and Korea, but has be-

come an invasive species in many parts of the world, including North America and 

Europe [1]. Following this context there are many studies available for HH and its ef-

fects as an insect pest. They provide valuable information on the behavior, biology, and 

management of the brown marmorated stink bug, as well as its impact on various crops 

and industries [2-5]. 

HHs feed on a variety of plants, including fruits, vegetables, and ornamental plants, 

and can cause significant damage to crop [2]. Some of the main crops that are affected 

by this invasive species include apples, grapes, peaches, and soybeans [3]. The invasive 
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nature of the brown marmorated stink bug has caused concern among farmers and 

homeowners, and efforts are being made to control its spread and limit its impact on 

agriculture and the environment [4]. 

Regarding insect pests, effective management strategies include technological, bio-

logical, and chemical methods to control their populations and reduce their impact on 

ecosystems and agriculture [5]. Deep learning and neural networks are modern ways of 

detecting insect pests in the field. In recent years, there has been a growing interest in 

using machine learning techniques to automate pest detection in agriculture [6]. How-

ever, it is important to note that these models require significant amounts of high-qual-

ity training data and computational resources to develop and deploy [7-12]. Addition-

ally, the accuracy of the model's predictions can be affected by factors such as lighting 

conditions, camera angles, and the diversity of insect pests in the field. Therefore, care-

ful calibration and validation of the model are necessary to ensure reliable pest detec-

tion. 

Deep learning has become popular in modern agriculture due to its ability to analyze 

and process large amounts of data efficiently. With the increasing availability of sensors 

and data collection devices, agriculture has become a data-rich industry. Deep learning 

algorithms can process this data and extract valuable insights that can help farmers 

make informed decisions. For precision agriculture, deep learning algorithms can ana-

lyze various environmental and crop-related data [6]. On the other hand, deep learning 

algorithms can analyze images of crops taken from drones, digital cameras, or other 

devices and identify patterns of growth, disease, and pest infestation [7]. This infor-

mation can help farmers make timely decisions about crop management. To detect in-

sect pests using deep learning and neural networks, the need is to train the models using 

large datasets of images of both healthy and infested crops [8, 9, 11]. The model would 

learn to recognize patterns in the images that distinguish healthy plants from infested 

ones. Once trained, the model can then be used to automatically detect pest infestations 

in new images of crops taken in the field [12]. 

Neural networks have the potential to improve insect pest detection and classifica-

tion in modern agriculture, which can lead to better pest management and higher crop 

yields. One common approach is to use image classification techniques based on con-

volutional neural networks (CNNs) to identify and classify insect pests. This involves 

training a neural network on a large dataset of images of crops and insects, where the 

images are labeled with information about the presence of insect pests. The neural net-

work learns to recognize the patterns and features of the insects in the images and can 

then classify new images as containing a specific insect pest or not. 

This paper is organized in four sections, presenting the details that were the basis of 

the study. Considering the presented introduction section, the rest of the sections are 

organized as follows: Section 2, Materials and Methods, presents the data set used to 

develop the present work in relation to the object detection task for HH, the models 

used are presented. On the other hand, the hardware and software part used to imple-

ment neural networks is also noted. Section 3 presents the experimental results, perfor-

mances, and corresponding discussions. Finally, a short section of conclusions is pre-

sented. 
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2 Material and Methods  

2.1 Dataset Used 

To develop and train accurate neural networks for pest detection, a substantial amount 
of data is required, which can be a challenge in some agricultural contexts. A proprietary 
dataset was created for this work using real images taken in the orchard field. The dataset 
tracks the presence of the HHs insect pest in the images. A custom dataset was designed 
and implemented for the purpose of YOLO (You Only Look Once) family to HH detec-
tion. Transfer learning applied to a custom dataset with images in the field and fine-
tuning hyperparameters were followed for this study. The data set is proprietary, and no 
external or public image databases were queried or included in this study.  
 Because this work relies on an object detection task, LabelImg [13] was the choice 
to create the labeled data to train the YOLOv5 and YOLOv8 models to detect object 
classes in our case. The labels were exported to YOLO format, using a .txt file to de-
scribe the manually bounding box labeled objects in each image, with one object in each 
row. A dataset partition was implemented to group images in each directory for training, 
validation, and testing. The created dataset consists of 312 images divided as follows: 
70% for training (218 images), 20% for validation (62 images), and finally 10% for test-
ing (32 images). For the data set created, it is important to mention that the images may 
contain one or more instances of the insect of interest. 
 The images in the dataset depict a real context represented by various orchard images 
taken using a precision camera drone. The images taken from the drone went through a 
pre-processing step before being fed into the training part of the network. An example 
of images from the training set can be viewed in Fig. 1 below. In this way, manual iden-
tification of regions of interest was pursued and image patches of size 640 × 640 pixels 
were gathered to create the mentioned dataset. The image size followed is the one from 
the official YOLOv8 documentation.  
 

 

Fig. 1. Example of training images.  
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2.2 Neural Networks Used 

Pre-trained models from YOLO object detection family were used for training and eval-

uation for HH detection using digital images in the field. YOLO is an object detection 

algorithm developed in [14]. It was first introduced in 2015 and has since then become 

one of the most popular and widely used object detection algorithms in computer vision. 

The YOLO algorithm is based on a deep convolutional neural network (CNN) archi-

tecture that uses a single pass to perform object detection. Unlike other object detection 

algorithms that rely on region proposals, YOLO uses a grid of cells to divide the image 

into smaller regions and predicts the object class and location for each cell. The algo-

rithm is trained on large datasets, such as the COCO (Common Objects in Context) 

dataset and has been designed to be fast and accurate. Today, YOLO is used in a wide 

range of applications, including autonomous vehicles, security systems, and video an-

alytics. The YOLO algorithm has been integrated into many popular computer vision 

frameworks, such as OpenCV, TensorFlow, or PyTorch, and has become a standard 

benchmark for object detection in computer vision. The key feature of the YOLO fam-

ily is its ability to perform object detection in real-time on GPU hardware. 

YOLOv5 is a cutting-edge deep learning-based object recognition method based on 

the YOLO family of object detection models [15]. The structure of the YOLOv5 model 

can be broken down into several main components: input processing, backbone net-

work, neck network, and detection head. The input image is first preprocessed by resiz-

ing it to a fixed size and then normalized by subtracting the mean pixel value and di-

viding it by the standard deviation. The backbone network is responsible for extracting 

features from the input image. YOLOv5 uses a CSPNet backbone network, which con-

sists of a series of convolutional layers that gradually reduce the spatial resolution of 

the feature maps while increasing their depth. Next, the neck network is placed for 

combining the features extracted by the backbone and producing a set of feature maps 

with rich spatial information. In the case of YOLOv5 the spatial pyramid pooling (SPP) 

module is used, pooling features at multiple scales and capturing objects of different 

sizes. The detection head is the next component for YOLOv5, using a multi-scale an-

chor-based detection head. This one predicts a set of bounding boxes and class proba-

bilities for each anchor at multiple scales. Using non-maximum suppression (NMS) the 

predicted boxes are filtered and refined to compute the final detections. 

The current state-of-the-art (SOTA) release, YOLOv8, is an upgraded version from 

the YOLO family that has improved accuracy and speed compared to the previous ver-

sions [16]. YOLOv8 has a more complex architecture that includes multiple neural net-

work layers and skip connections to better model object relationships and features. It 

has improved anchor box design and data augmentation techniques, resulting in better 

accuracy. At the time of the development of the present study, there was no official 

published paper for the new YOLOv8. The ideas developed and the analysis of the 

YOLOv8 architecture were based on the online documentation made available by the 

team that implemented the new version and the research of the open-source code [16]. 

As a quick summary, developed by Ultralytics, YOLOv8 offers a boost in perfor-

mance and flexibility over its predecessors and still follows a wide area in object de-

tection and image classification, and segmentation tasks. Following the Ultralytics 
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release, all YOLOv8 models could be used as pre-trained models under different avail-

ability – YOLOv8n, YOLOv8s, YOLOv8m, YOLOv8l, YOLOv8x. The models used 

for detection and segmentation were tested and evaluated over MS COCO (Microsoft 

Common Objects in Context) dataset, while the models used for classification are pre-

trained on ImageNet data. The extensibility of YOLOv8 is an important feature.  

The current SOTA is built as a framework that supports all prior YOLO versions, 

having the option to move between them and evaluate their performance. To note the 

extensive changes starting from the previous versions and the novelty part, YOLOV8 

is described using a new head with anchor-free detection and introducing a new back-

bone and loss function. The anchorless addition will not follow any anchor box offset 

and will detect the center of the object. Also, this addition will have a big impact on 

Non-Maximum Suppression (NMS). Closing the mosaic augmentation was also imple-

mented for the last epochs in the training steps. The PyTorch integration and a well-

documented CLI could also describe the innovations in this YOLOv8 release.  

For this study, YOLOv8 was used as the main model for HH detection using images 

from a pear orchard. The choice to implement also the YOLOv5 model was made to 

describe a comparison area with the new version in the YOLO family - YOLOv8.  

As a programming language, Python version 3.10 was used for the implementation. 

PyTorch was considered as deep-learning framework in this context with Miniconda 

and Jupyter Notebook to define and organize the code. The hardware part was defined 

by a system that aimed to integrate a GPU component for training and evaluating the 

used models. In this regard, the system features an NVIDIA RTX 2080Ti GPU with 

11GB memory and CUDA V11.7. The other components of the system were repre-

sented by 128GB of RAM and an Intel Core i9-11900K processor. The operating sys-

tem was represented by Ubuntu V22. 

3 Experimental Results and Discussions 

Training experiments are based on several model settings using the YOLOv8 and 

YOLOv5 architectures: the number of epochs was 300, the models used were 

YOLOv8m and YOLOv5m, and the input image size for object detection was as each 

model suggests 640 × 640 pixels. The custom class for object detection to highlight the 

HH pest was denoted with the acronym: HH. A configuration YAML file was added to 

define the paths for each directory involved in the training and evaluation part. The 

images in the test and validation set are different from the ones the model analyzes in 

the training phase so that the evaluation is robust and based on new contexts and infor-

mation. Both models were trained and evaluated using the same dataset. An example 

with validation images is shown in Fig. 2. 

For both models used, training and validation accuracy and loss plots are shown in 

Fig. 3 for YOLOv8m and in Fig. 4 for YOLOv5m to describe the model performance. 

Following the object detection task, the final output for each model is a list of bounding 

boxes and associated class labels, along with their confidence scores. Analyzing the 

training results, we can note a great accuracy for the YOLOv8m model using transfer 

learning for object detection regarding the HH pest from real orchard context images. 
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Fig. 2. Example images from the validation dataset. 

  

 

Fig. 3. YOLOv8m training and validation results. 

 

Fig. 4. YOLOv5m training and validation results. 
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In the same scenario for HH detection, Fig. 5 shows the computed precision-recall 

curve obtained for YOLOv8m and Fig. 6 for YOLOv5m. For HH object detection, this 

is a valuable tool for evaluating algorithm performance and making decisions about the 

threshold for predictions. In practice, it is commonly used to evaluate the performance 

of an object detection algorithm and to make decisions about the appropriate threshold 

for predictions. The precision-recall curve is plotted as a scatter plot with precision on 

the y-axis and recall on the x-axis. Each point on the curve represents a different thresh-

old for predictions, and the curve is created by connecting the points in order of increas-

ing the threshold. Precision is the proportion of true positive predictions out of all pos-

itive predictions, while recall is the proportion of true positive predictions out of all true 

positive cases. As the threshold increases, precision will typically increase while recall 

will decrease. The ideal curve would have a slope of 1 and achieve a precision of 1 and 

a recall of 1 at the highest threshold. However, in practice, the precision-recall curve 

will often be an S-shaped curve, to understand the balance between false positive and 

false negative errors. 

  

Fig. 5. The precision-recall curve obtained 

for HH pest detection using YOLOv8m. 

Fig. 6. The precision-recall curve obtained 

for HH pest detection using YOLOv5m. 

Examples of the prediction part resulting from network training and analysis are 

shown in Fig. 7 for YOLOv8m and in Fig. 8 for YOLOv5m. It can be seen in the at-

tached prediction figure for YOLOv5m that the model failed to identify the insect for 

row one, image number two, and in image number three the model identified a spot on 

the leaf as an HH-type insect. The same reference images were used for both models to 

illustrate the area of comparison for the obtained performances and predictions. 

 For both models, we aimed to attach the confusion matrix resulting from the training 

and evaluation processes to calculate the performance indicators. The figures with rep-

resentative confusion matrices are attached in Fig. 9 and Fig. 10 for YOLOv8m and 

YOLOv5m, respectively in the case of learning and validation only with images con-

taining HH and in Fig. 11 and Fig. 12 in the case of testing with images containing HH 

and images without HH (background).  
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Fig. 7. Examples with HH predictions generated by YOLOv8m. 

 

 

Fig. 8. Examples with HH predictions generated by YOLOv5m. 

  

Fig. 9. The confusion matrix obtained for HH 

pest detection using YOLOv8m after training 

and validation. 

Fig. 10. The confusion matrix obtained for 

HH pest detection using YOLOv5m after 

training and validation. 
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Fig. 11. YOLOv8m confusion matrix ob-

tained using the test dataset. 

Fig. 12. YOLOv5m confusion matrix ob-

tained using the test dataset. 

 

For testing the network various images were considered. These contain images in 

which the insect of interest (HH) is present in one or more instances, images with a 

complex background that do not feature this insect or any other insects, and selected 

images containing other types of insects to test the ability used models trained for HH 

detection and rejection of other insects or artifacts at the digital image level. In the case 

of the models in the present study, it is observed that they manage with high accuracy 

to identify the insect of interest of the HH class and avoid the detection of artifacts from 

the background area or representations of other insects.  

Testing the models was also done by attaching images in which the insect of interest 

is partially visible, illustrating various positions of it or being partially visible because 

it can be covered by various elements (flowers, leaves, branches) or located under var-

ious lighting areas (sun rays, shading or insects present at the base of the fruits). Rep-

resentative example types were also attached to the training and validation datasets. 

The results are notable in these cases, the models used to be able to locate the insect of 

interest with great precision. Examples of this type are attached in Fig. 13a. for 

YOLOv8m and Fig. 13b. for YOLOv5m. We note in the first instance in Fig. 13b. – 

second row that the YOLOv5m network fails to correctly identify the partially visible 

insect in the top left. At the same time, the models used can successfully identify the 

presence of several insects at the image level. These are exemplified in Fig. 14a for 

YOLOv8m and Fig. 14b for YOLOv5m. From these examples, the trend of increased 

accuracy can be observed in the case of the newly developed network of the YOLO 

family, namely v8, although we can note the performance gradually resulting from the 

optimization of the v5 model.  

On the other hand, the model is not perfect and sometimes manages to identify areas 

in the images that are not represented by the insect of interest, defining parts of the 

background area that are represented by the presence of spots on leaves or spots on 

fruits. Examples of this type are indicated in the previously attached confusion matrices 

(Fig. 11 and Fig. 12), where the problem of false positive and false negative detections 

is observed. 
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Fig. 13. Examples of HH predictions with 

partially visible insects. 

Fig. 14. Examples of predictions with multi-

ple insects in the image. 

 

  To evaluate the performance and robustness of the models used, the test phase aimed 

to evaluate the networks based on images that represent real contexts, from the orchard 

level, in which the detection of insects of interest of the HH type is aimed. The images 

illustrate both areas of complex background where the insect of interest is not present, 

as well as images illustrating the presence of HH class insects in poses where the insect 

is difficult to spot, partially hidden, or even difficult to see due to differences in bright-

ness or even of the blur that can be present from the image acquisition area. The test 

dataset consisted of 31 images with complex backgrounds and 19 images where the HH 

insect is visible. For images where the insect is visible, the number of insect instances 

that have been attached in this test dataset is 24. In this case, the insect may be visible 

in one or more instances at the image level.  

To test the network, it was followed to pass the trained and validated models through 

the new data set to calculate accuracies and prediction areas, and finally a confusion 

matrix to be populated with the false and true predictions. Since the resulting confusion 

matrices from the validation dataset of both networks do not provide the necessary in-

dices, it was aimed to create new instances of the confusion matrices based on the test 

dataset. After testing, the confusion matrices are attached in Fig. 11 for the YOLOv8m 

model and in Fig. 12 for the YOLOv5m model. Following the results obtained, in-

creased performance can be seen in the case of the new YOLOv8 model. However, 

satisfactory results were also obtained in the case of YOLOv5, opening a research and 

development direction for both models. The statistical result indicators were as follows: 

▪ YOLOv8m: Precision = 0.957, Recall = 0.928, mAP50 = 0.942 (training and vali-

dation), Accuracy = 94.55% (test). 

▪ YOLOv5m: Precision = 0.954, Recall = 0.857, mAP50 = 0.920 (training and vali-

dation), Accuracy = 90.91% (test). 

Looking from the perspective of an explanatory analysis to describe the behavior of 

the YOLO models in relation to the identification of the HH insect, one observes the 

tendency of the models to detect the object represented by the insect of interest when it 

is present on leaves or even on fruits. In these cases, the model identification accuracy 
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tends to the maximum. For these image areas, the insect is depicted surrounded by a 

uniform background, its features being distinctly different. 

It is observed that most false detections intervene when the insect is present on the 

branches or is in occlusion areas being covered by background areas. In these cases, the 

model tends to direct its attention to the leafy area, as previously mentioned, but the 

insect being visible in another context, in areas of shading, occlusion or in areas close 

to branches, the accuracy values start to decrease for such examples. The pixels repre-

senting the branch areas appear to have similar colors to those of the HH insects, and 

occlusions or various shading areas decrease the algorithm's ability to detect the full 

features of the insect. For these marginal cases, image enhancement and pre-processing 

techniques can bring out the characteristics of the insect much better, so that it is better 

differentiated from the background area. 

To describe the novelty and the research directions, the implementations presented 

in this study represent a strong point, with notable results in research on the automatic 

detection and HH identification, at the level of digital images illustrating real contexts 

and which are based on techniques that include convolutional neural networks and re-

lated software modules. The results obtained based on neural network models bring to 

the fore the advantages and popularity of these automatic identification techniques. Alt-

hough there are some studies based on the HH identification at the level of digital im-

ages and using deep learning techniques, from our knowledge there are no studies that 

focus on the identification of this insect of interest at the level of real context by using 

representative images or data sets in cases of various types of crops that are affected by 

the presence and massive spread of this insect pest. In this sense, due to the highly 

invasive characteristics of this population of harmful insects, we emphasize an im-

portant and necessary direction of research that can be developed along the way in the 

precise identification of this type of pest using various techniques and developing the 

recent studies attached to this topic. 

4 Conclusions  

In this study, a novel implementation using YOLOv8 was used for HH detection. 

The new version of YOLOv8 opened the road regarding the state of the art in real-time 

object detection and improved the accuracy of its predecessors. It is worth noting that 

the YOLO architecture has undergone several iterations, with each new version intro-

ducing improvements in terms of accuracy, speed, and robustness. Each new version of 

YOLO has built upon the previous versions and has added new features and techniques 

to improve object detection performance. Although the number of images was rela-

tively small, good results were obtained through transfer learning. Unfortunately, no 

comparison articles were found for the investigated application. 
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