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Abstract. In previous years, there has been a strong increase in working models 

in the areas of artificial intelligence development based on high-performance 

hardware and software resources. The agricultural industry was also placed in 

this area of development, which benefited greatly from the research and tools that 

emerged. The pest detection area was the main aspect considered and the attach-

ment of image processing modules motivated the adoption of such techniques. 

After analyzing the existing solutions, the paper implemented two convolutional 

neural network architectures adapted for the automatic detection of Halyomorpha 

Halys pests by classifying images taken from orchards. The new version of the 

Python programming language, its attached libraries, and architectures adapted 

from EfficientNet and Google Inception V3 was used to define, train, and test the 

proposed architectures. The good results obtained (accuracy between 0.92 and 

0.95) make it possible to implement an efficient system for detecting and moni-

toring harmful insects in a complex environment such as orchard trees.   

Keywords: Image Processing, Neural Networks, Orchard Monitoring, Insect 

Detection.     

1 Introduction 

A recent report by Stanford University (Artificial Intelligence Index Report) [1] shows 

the impact that artificial intelligence has had in a multitude of domains and the fact that 

it targets highly diversified areas. In the interval 2019-2020, the publications on the 

artificial intelligence area increased considerably by a percentage of 34.5%, consider-

ing the increase of 19.6% from the previous interval 2018-2019. In this sense, the area 

of artificial intelligence has also had a major impact in the field of agriculture or biology 

- they are rapidly developing tools for data analysis, complex representations of them, 

or pest detection. 

For agricultural areas, the algorithms of pest detection and monitoring have en-

hanced automation processes and provided stakeholders or farmland owners with an 

overview of the areas they are considering. Automatic pest detection and monitoring 

using remote-controlled imaging systems is one of the key steps in these areas. 



2 

 

Following the evolution of ImageNet systems that provide a graph of performance over 

time, there has been an upward trend in research areas that focus on increasing the 

efficiency of the training of image recognition and classification systems. Although the 

ImageNet – based module is very popular and developed accordingly, existing com-

puter vision systems do not always provide the desired results. In this case, there are a 

lot of research works that look at the robustness and performance of image classifiers 

based on hand-built and custom datasets. 

The area of implementation and subsequent developments of the convolutional neu-

ral networks (CNNs) are limited to the construction of algorithms and their optimiza-

tion for the architectures capable of classifying or detecting objects in images. Agricul-

tural ecosystems are one of those areas where algorithms have had a massive impact on 

understanding the processes involved. Careful monitoring and analysis of various as-

pects are very important in this field, and it has often been desired to integrate IoT 

systems and remote-controlled devices to meet these needs. 

At the same time, the integration of revolutionary technologies has helped agricul-

tural landowners to reduce monitoring costs and carefully introduce non-invasive tools 

to detect the issues they have in mind. As the authors in [2] pointed out, the monitoring 

areas were limited to the automatic acquisition and analysis of digital images to identify 

pests for reference agricultural ecosystems. It has been observed that the integration of 

computer vision modules and artificial intelligence can meet the need for fast, timely, 

and accurate detection of areas of interest, compared to manual identification which 

requires execution time, is prone to errors, and is often done by experts in the field. 

Given the automatic acquisition of digital images, research areas were later devel-

oped for the implementation of algorithms capable of extracting useful information 

from these images using deep learning methods based on CNNs. The convolutional 

neural networks have proven useful in satisfying these aspects of image classification 

or segmentation, used in practical work as input data sets for specific algorithms. The 

methodologies and architectures are diverse and present various values of perfor-

mances. The CPAFNet neural network model developed in [3] was used to identify 

common pests of agricultural ecosystems. The CNN was modeled accordingly, and the 

key parameters were gradually transformed based on the data set to obtain a high-per-

formance model. As a classification area, pests were recognized based on a 3- fold 

validation method. To validate the proposed model, the test experiments were based on 

VGG16, Inception V3, and ResNet50 architectures. 

In the same trend, the authors in [4] proposed a solution for automatic pest detection 

based on images taken from mustard and bean crops. Regions of interest are properly 

extracted using Wavelet transformation and image fusion techniques. At the same time, 

the research area allowed the integration of the proposed solution with real-time moni-

toring networks based on IoT or wireless sensor networks. 

Because of its characteristics of very high mobility and increased reproductive po-

tential, Halyomorpha Halys (HH) is a harmful pest, spreading today throughout the 

European continent. They are causing significant damage to agricultural crops and es-

pecially to orchards. In this context, the population feeds on fruits and seeds, bringing 

significant mutations to plant products, being almost impossible to market them. Alt-

hough solutions have been adopted, strongly based on the fight against HH using 
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insecticides, they do not bring satisfactory results, such solutions being unfriendly to 

the environment and affecting the credibility or trust of the production staff. This paper 

aims to introduce a less invasive automation solution that will allow the acquisition of 

data from the orchards and then the identification and recognition of the target popula-

tion for this type of pest. Thus, we proposed a solution for detecting harmful insects 

like HH in images using performant convolutional neural networks (CNNs) and, espe-

cially, a modified Single Shot Detector (SSD) [5]. The paper’s goal was to implement 

and compare two efficient convolutional neural network architectures modified for the 

automatic detection of HH pests by classifying images taken from orchards. The new 

version of the Python programming language, its attached libraries, and architectures 

adapted from EfficientNet and Google Inception V3, was used to define, train, and test 

the proposed architectures. The CNNs used were training and tested on a new dataset 

created by the authors. 

2 Materials and Methods   

2.1 Convolutional Neural Networks Used   

As is well known, a convolutional neural network is structured using several convolu-

tion layers, pooling (mean-pooling or max-pooling) layers, fully connected layers, and 

normalization layers [6]. The convolutional network type is a key element for many 

computer vision algorithms. In this case, the process shows the existence of a small 

matrix (called filter) which is passed over the reference image and transformed based 

on the filter values. We chose, modified, and tested two performant neural networks, 

EfficientNet and Inception V3, to detect HH in an orchard context. 

EfficientNet [7] represented the network model that rethought the scaling mode of 

the architecture to optimize the performances. In general, the three scaling dimensions 

are represented by depth, width, and resolution. The authors of this paper provided a 

systematic research model for concrete balancing in their scaling to achieve notable 

performances. At the same time, the authors in [8] introduced new methods of network 

optimization through the efficient use of computing resources, increasing the number 

of input data, and the use of graphics processing units for training. 

On the other hand, we discuss an alternative presented by Google, called Inception, 

that was proposed in the 2014 ImageNet Visual Recognition Challenge [9]. The Incep-

tion architecture brought to the forefront a revolutionary, high-performance technique 

for image recognition and detection algorithms. The complex architecture of the CNN 

Inception network features various techniques to increase performance in terms of both 

speed and model accuracy. Over time, it has seen steady growth, which has been reduced 

to several versions, V1 [10], V2-V3 (with quite similar structures) [11], and V4 [12], 

each new version showing considerable improvements compared to the previous one. 

To increase the performance and relevance of a convolutional network, the techniques 

usually involve adding extra layers and computing areas that will ultimately increase the 

so-called depth of the proposed network [13]. In the case of the Inception architectures, 

the number of layers practically does not increase but goes wider, implementing several 

convolution areas of different sizes in the same layer. Therefore, choosing a standard 
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kernel size is obviously difficult. For such variable dimensions, the need is introduced 

to create kernels of different sizes for the analysis of the distribution of areas of interest, 

because in a set of images the area occupied by the object of interest can be considerably 

different. The larger core is preferred for globally distributed areas of interest, and the 

smaller core is chosen for locally distributed information in the image. 

The proposed Inception architecture has been tested on color im ages with a resolution 

of 299×299 pixels. Each Inception module performs 4 types of operations: convolution 

with kernels of size 1×1, 3×3, and 5×5, followed by a max-pooling layer to reduce the 

resolution of the feature map. The usefulness of 1×1 convolution reduces the depth, and 

the results of the operations are sent to form the block called Filter Concatenation. The 

mentioned global characteristics are captured by the 5×5 convolution layer, and the dis-

tributed ones are captured by the 3×3 layer.  

Compared to the EfficientNet network architecture, the drive time is similar for both 

architectures [13].  

As first objective of the paper was to propose and implement a neural network mod-

ified from the   EfficientNet architecture (CNN-1) and a modified architecture that 

includes the Inception V3 architecture (CNN-2) have been in this paper. Because the 

number of available images and the number of classes are small, modified architectures 

are necessary. For the CNN-1 network, we introduced new layers that are shown in Fig. 

1. The new layers for the network CNN-2, modified and based on Inception V3, are 

shown in Fig.2. Using bold text, the changes and techniques brought to create the ar-

chitectures for this work are shown. The total number of parameters for each network 

used is attached below each figure. 

 

Fig. 1. CNN-1 EfficientNet modified.      

 

Fig. 2. CNN-2 Inception V3 modified.      
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2.2 Dataset Used 

Images with HH and without HH were hand-cut into patches (sub-images) of 128×128 

size. These were made on different orchards, and the images were generated manually by 

tracking and photographing the individual insects, especially HH. The data set with such 

images were created by the authors. Examples of such patches for the learning phase are 

given in Fig.3. 

 

     
  a)   

     
  b)   

     
  b)   

     
  b)   

     
  a)   

     
  a)   

Fig. 3. Examples of learning images (patches): a) images containing HH, b) images without HH.      
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At the testing phase, each CNN receives 128×128-pixel color RGB patches at the 

input. These patches are generated by a sliding box algorithm. For both networks ana-

lyzed, the original image set was divided into two sets: training and testing. The patches 

were resized in the network training/testing process. The original image set (without 

augmentation) includes the following sets: 

• Training set: 160 images with HH, 262 images without HH (nonHH). 

• Testing set: 72 images with HH, 60 images without HH. 

To increase the robustness of the network, the number of images in the original set 

for the training and validation stage was increased by augmentation operations [14]. 

The operations selected for image preprocessing are adaptive histogram equalization 

(CLAHE - Contrast Limited Adaptive Histogram Equalization), Gaussian noise gener-

ation, median filter, optical distortion, blur, etc. 

The second objective of this paper was to describe and implement a robust, well-

structured data set that would become a solid entry point for classification algorithms. 

In this regard, images of the HH were taken manually and integrated with other types 

of images with insects belonging to other families to give the algorithms a parallel path 

in the classification operation. In this way, the classification classes, denoted HH for 

the appearance of the harmful stink bug in the image and nonHH for its absence, for 

the images without HH or insects of any kind or not, were constructed theoretically. 

Furthermore, these classes have been transposed and implemented practically at the 

software level. The dataset is an original one and no other insect databases were used 

for this work. Furthermore, the data set was annotated manually, with increased care, 

using the popular bounding-box structures and then subsequently prepared for the train-

ing area. 

 

2.3 Software Used 

From the software point of view, the CNN network used to classify HH and nonHH 

was implemented in Python version 3.9, using the TensorFlow version 2.7 library de-

veloped by Google [15]. CNN's implementation used the Keras module in Tensorflow 

[15]. 

The number of network parameters is small, which reduces the complexity of the 

calculation in the network drive phase, respectively in the prediction phase. As men-

tioned earlier, the network input layer is a 128×128 pixels RGB color image, each color 

level is represented by 8 bits. Fig. 4 shows the organigram that is representative of the 

implementation of augmentation operations. Through the augmentation operation, a 

larger number of images is obtained: 2110 images as a training set and 500 images as 

a test set. 

In the proposed network the convolution layers have a kernel size of 3×3 for each 

plane. The max-pooling operation operates on a 2×2 size window. The image is parti-

tioned into 2×2 blocks, and each block is replaced by a pixel whose value is the maxi-

mum in the block (max-pooling operation). The first Conv2D layer generates 8 feature 

maps. Equation (1) shows the number of parameters (No) to be learned. 

 

No = 8 × (3 × 3 × 3 + 1) = 224                                  (1) 
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For the first feature map, we learn a matrix of weights measuring 3×3×3 + bias. The 

third parameter in the multiplication operation is the number of planes in the image. 

Before entering, the pixels in each color plane are normalized in the range [0,1] by 

dividing by 255. 

From the mathematical point of view, a feature map is the result of the activation 

function ƒ applied to the convolution operation between the RGB image and the con-

volution kernel K to which we add the bias b to each pixel resulting from the convolu-

tion operation. 

It is important to note that if the RGB image has P planes, the result of the convolu-

tion operation will be an image with the same number of planes. If we add the same 

bias b to each pixel, the result is a plane P image. The activation function reduces the 

number of planes to 1 and we get a feature map. The feature map will become the entry 

for the next layer of the network. 

 

Fig. 4. The organigram for the augmentation process.      

To reduce the number of calculation operations for the convolution operation the 

MaxPooling 2D operation was used. This reduced the resolution of the feature map. It 

can be observed the increase of the number of feature maps as the resolution decreases, 

which leads to a controlled increase in the number of network parameters. The Flatten 

operation turns a feature map into a vector. Then we apply through the Dense type of 

operation, and we build a fully connected layer of multilayer perceptron type (Multi-

layer Perceptron - abbreviation MLP). This MLP network will be used for classifica-

tion. The activation function used is SoftMax. Because we have two classes (HH and 

nonHH), the function selected for optimization is binary cross-entropy. The lower its 

value, the better the classification. The number of epochs for the convolutional network 

is 25 epochs. The optimization algorithm is Adam, with a learning rate of 0.0001. 

To assess the algorithm performance, the aim was to calculate the representative in- 

dices using the confusion matrix. This is a visual indicator of performance and provides 

an overview of the errors and performance of the classification algorithm [17]. A test 

dataset with the expected results is required to calculate the confusion matrix (Fig. 5). 

Then a prediction is made for each row in the dataset. Subsequently, the correct predic-

tions for each class and the number of incorrect predictions, organized by the predicted 
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class, are noted. Each row in the matrix corresponds to an existing class and each col-

umn to a predicted class. Finally, the number of correct and incorrect classifications is 

completed, with better visualization and interpretation of the data. 

 

 
 

Fig. 5. The confusion matrix.    

3 Experimental Results and Discussions    

The evolution of the accuracy function for CNN-1 EfficientNet is shown in Fig. 6. a. and 

for CNN-2 Inception V3 in Fig. 6. b. The evolution of loss function for CNN-1 

EfficientNet is shown in Fig. 6. c. and for CNN-2 Inception V3 in Fig. 6. d. 

 
 

 

 

 

a) b) 
 

 

 

 

c) d) 

Fig. 6. Performance indicators for CNNs. a) Accuracy graph for CNN-1, b) Accuracy graph for 

CNN-2, c) Loss function graph for CNN-1, d) Loss function graph for CNN-2.    
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For each figure, the blue line shows the evolution of the functions in the training area, 

and the orange one reflects the evolution of the functions in the testing phase. 

Examples from the testing dataset are shown in Fig. 7. 

 

     

  b)   
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  a)   

Fig. 7. Examples of testing images: a) images with HH, b) images without HH.            
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For the efficient visualization of the data and the performances, the implementation 

of the confusion matrix for each network was used. For CNN-1 EfficientNet, the non-

normalized confusion matrix is attached in Fig.8. a. For CNN-2 Inception V3, the non-

normalized confusion matrix is attached in Fig.8. b. For their implementation, 32 

images with bugs (HH) were considered, respectively 61 images without HH from the 

data set. 

 

  
a) b) 

 

Fig. 8. Confusion matrices: a) CNN-1 EfficientNet, b) CNN-2 Inception V3.               

Based on the confusion matrix, the performance evaluation was limited to the 

calculation of its representative indices: precision, sensitivity, specificity, accuracy, and 

F1 score. These indicators are presented for each network in Table 1. The first 

disadvantage of the proposed implementation for this paper is the small to medium size 

of the data set with images from orchards. For the development of an impact solution, 

a considerable data set of representative images for the population of HH may be 

entered, described, and annotated accordingly. Secondly, the images in the major set to 

be introduced may exemplify enough hypostases for the reference stink bug. The 

discussion and this implementation want to propose a set of images of various sizes, 

scaled or rotated, and with a considerable arrangement of the referenced bug. Very 

important that the acquisition of images is not perfect many times, the object of interest 

in the image may be small, cropped, or with reduced clarity. 

 

Table 1. Performance evaluation. 
 

Network Precision Sensitivity Specificity Accuracy F1 

CNN-1  

EfficientNet 

 

1.00 0.87 1.00 0.95 0.93 

CNN-2 

Inception v3 
0.96 0.81 0.98 0.92 0.87 

4 Conclusions 

Following the experimental results described in this paper and considering the two pro- 

posed networks, a comparative study shows that the CNN-1 EfficientNet network per- 
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forms better than the CNN-2 Inception V3 network, due to the complexity of the asso-

ciated structure. The increased performance of the CNN-1 EfficientNet network is also 

visible in the associated confusion matrix. Sensitivity and accuracy are higher (so bet-

ter) with CNN-1 EfficientNet. At the same time, considerable information and results 

were presented, which allows the development of this work in the future by enlarging 

the set of images and by implementing more robust classification solutions. Given these 

strategies, for the present paper, it is possible to considerably improve the entry point 

and the learning model for the presented algorithms and architectures, the subject of 

the paper being one of interest. However, we can see from the data presented in this 

paper, that the advantages of the existing data set are the fact that the implemented 

architectures presented a good classification score. Also in this sense, the increase of 

the data set would imply the further development of the classification solutions. Finally, 

it was studied how the introduction of a convolutional network with considerable di-

mensions improved the metrics and values of performance indicators. As further work 

we intend to use the individual selected neural networks as subjective classifiers inside 

a combined multi-network system (as a collective intelligence) to better detection of 

HH in different hypostases inside the trees. 
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