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Modern and precision agriculture is constantly evolving, and the use of

technology has become a critical factor in improving crop yields and

protecting plants from harmful insects and pests. The use of neural networks is

emerging as a new trend in modern agriculture that enables machines to learn

and recognize patterns in data. In recent years, researchers and industry experts

have been exploring the use of neural networks for detecting harmful insects and

pests in crops, allowing farmers to act and mitigate damage. This paper provides

an overview of new trends in modern agriculture for harmful insect and pest

detection using neural networks. Using a systematic review, the benefits and

challenges of this technology are highlighted, as well as various techniques being

taken by researchers to improve its effectiveness. Specifically, the review focuses

on the use of an ensemble of neural networks, pest databases, modern software,

and innovative modified architectures for pest detection. The review is based on

the analysis of multiple research papers published between 2015 and 2022, with

the analysis of the new trends conducted between 2020 and 2022. The study

concludes by emphasizing the significance of ongoing research and

development of neural network-based pest detection systems to maintain

sustainable and efficient agricultural production.
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1 Introduction

The adoption of artificial intelligence (AI) and integrated structures has rapidly become

multidisciplinary and spread across various fields, dominating research areas and plans in

previous years (Zhang, 2022). Thanks to the technological advancements in the field of AI

and more importantly in the field of deep learning (DL), a multitude of domains enjoy
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notable results for various associated tasks (Abade et al., 2021). This

advance has brought such technologies to the fore with great

success, its upward trajectory and continued development being

supported by a range of technological, financial, and educational

resources (Kumar and Kukreja, 2022). The integration of AI and

integrated structures has significantly impacted insect pest

detection, offering innovative solutions to this pressing

agricultural and environmental concern. This evolution is driven

by advancements in DL and supported by substantial resources,

ultimately resulting in the development of highly efficient and

sustainable techniques for insect pest detection and management

(LeCun et al., 2015).

Considering the agricultural field, these techniques have

enjoyed great popularity and started to be adopted on a large

scale, where human labor does not have the necessary time and

speed to analyze the data in a timely manner and to cover

considerable areas in the monitoring area (De Cesaro Júnior &

Rieder, 2020). Often, these features are more than useful and

relevant to every operation, and early detection, monitoring, and

classification deliver results to match (Ampatzidis et al., 2020). Due

to this aspect, automation areas have been successfully introduced

and are based on thorough research and massive development and

optimization techniques (Ahmad et al., 2022). Technological

advances, particularly in deep learning (DL), have been critical in

the identification of insect pests. These breakthroughs have resulted

in tremendous progress in correctly detecting and managing insect

pests in agriculture and other industries. In recent years, the use of

artificial intelligence (AI) and integrated structures has spread to a

variety of disciplines, with a special emphasis on insect pest

identification. This integrative approach has gained prominence

in research agendas, altering how we address pest-related concerns.

Intelligent and precision techniques are necessary for farmers,

especially for automation, because they reduce the complexity of

pest detection and counting estimation, compared to a process done

manually by farmers or authorized auxiliary persons, this process

being expensive and requiring a lot of time execution (Ahmad et al.,

2018; Apolo-Apolo et al., 2020; Thakare and Sankar, 2022).

Solutions based on DL and the automation of the processes

involved in crop management prove to be effective, with high

coverage and low costs (Iost Filho et al., 2019). At the same time,

it helps the process of detecting and managing pests in a timely

manner, without resorting to highly invasive solutions and

representing effective measures (Mavridou et al., 2019).

Considering the chemical treatment applied with pesticides, the

amounts administered become directly proportional to the degree

of infestation and do not present sustainability characteristics, as

they are present or required in modern development areas. Pest

populations cause massive, considerable damage to crops of various

types and sizes. This highlights an important point because

agriculture is the most significant economic branch in many

countries (Cardim Ferreira Lima et al., 2020). Monitoring,

managing, and protecting crops from insect pests is an important

step and an area of thorough research (Zhu et al., 2020). In an

unfortunate setting, the productivity and production volume of

agricultural areas is strongly affected by the appearance and

presence of pests and their widespread (Ahmad et al., 2022). The

identification and monitoring of pests, mostly represented by

insects, and careful management of crops are of interest in

agricultural development. Many times, the management of these

pests takes place in poorly managed processes, without clear

expertise, and often based on invasive, non-sustainable, and

polluting solutions (Wen & Guyer, 2012). Modern models and

techniques based on AI and DL, especially image processing and

convolutional neural networks (CNNs), are very useful and effective

in the so-called precision agriculture (PA) or integrated pest

management (IPM) (Mavridou et al., 2019). The way to combine

automatic or supervised image acquisition using drones and digital

cameras with the emphasized developments of models based on

CNNs was a great success (Du et al., 2022; Zhang et al., 2022).

The continuous progress of DL models has brought to the fore

several notable applications for pest management and PA in

general. CNNs, as part of DL, represent a state-of-the-art around

image analysis and are mainly and successfully used for the

development of classification, object detection, or segmentation

tasks (Wang et al., 2017; Zhang et al., 2020). In principle, the

convolution techniques and the mathematical models present

among them make possible the existence and continuous

expansion of the previously mentioned techniques and even their

strong development, modification, or optimization. Starting from

an initial and innovative step, these types of techniques have been

developed and researched along the way, having today a series of

remarkable architectures with adequate performance in various

tasks (Tian H. et al., 2020; Zhang et al., 2022). The study (Nanni

et al., 2022) addresses the problem of automatic identification of

invasive insects to combat crop damage and losses. The authors

created ensembles CNNs using various topologies optimized with

different Adam variants for pest identification. The best ensemble,

Abbreviations: ACC, Accuracy; AI, Artificial Intelligence; ANN, Artificial Neural

Network; API, Application Programming Interface; BPNN, Back-Propagation

Neural Network; CAD, Computer Aided Diagnosis; C-GAN, Conditional

Generative Adversarial Network; CNN, Convolutional Neural Network; CSA,

Channel-Spatial Attention; DA, Dragonfly Algorithm; DB, Database; DC-GAN,

Deep Convolutional Generative Adversarial Network; DCNN, Deep

Convolutional Neural Network; DL, Deep Learning; DS, Dataset; F1, Dice

Coefficient (F1 Score); FPN, Feature Pyramid Network; GaFPN, Global

Activated Feature Pyramid Network; GAM, Global Activated Module; GAN,

Generative Adversarial Network; IoT, Internet of Things; IPM, Integrated Pest

Management; KNN, K-Nearest Neighbor; LSTM, Long-Short Term Memory;

mAP, Mean Average Precision; MBD, Maryland Biodiversity Database; ML,

Machine Learning; MLP-ANN, Multilayer Perceptron Artificial Neural Network;

MSR, Multi-scale super-resolution; NIN, Network in Network; NMS, Non-

Maximum Suppression; ORB, Oriented Rotated Brief; PRE, Precision; PSSM,

Position-sensitive score map; R-CNN, Deep region based convolutional neural

network; ReLU, Rectified Linear Units; RGB, Red, Green, Blue; ROI, Region of

Interest; RPN, Region Proposal Network; SANN, Smart Agriculture Neural

Network; SEN, Sensitivity; SMOTE, Synthetic minority over-sampling

technique ; SOTA, State-of-the-art; SPE, Specificity ; SSD, Single Shot Detector;

SVM, Support Vector Machine; UAV, Unmanned Aerial Vehicle; YOLO, You

Only Look Once; ZF, Zeiler and Fergus Model.
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combining CNNs with various Adam variants, achieved impressive

results, surpassing human expert classifications on several known

datasets. With the awareness that agricultural pests severely impair

food crop quality, the importance of agriculture as an economic

backbone is underlined in (Sanghavi et al., 2022). Machine learning

models have been employed to handle pest categorization and

detection, however they suffer when dealing with insects that have

similar traits but live in diverse environments. The paper offers an

enhanced deep learning model named Hunger Games Search-based

Deep Convolutional Neural Network (HGS-DCNN) for efficient

insect identification with improved accuracy to address this

difficulty. The process of recognizing and classifying insects,

addressing several challenges, was proposed by the authors in

paper (Xia et al., 2018) locating information on an insect quickly

as part of a complex backdrop, precisely recognizing insect species,

especially when they are highly similar within the same species

(intra-class) and across species (inter-class) and identifying

differences in the appearance of the same insect species at various

stages of development. These issues are crucial in the field of insect

recognition and categorization.

Starting with a motivation area, we highlighted IPM and PA for

this study. There are several problems facing the current agricultural

sector in terms of production management, security, and the negative

impact of external and biological/natural factors (Csillik et al., 2018;

Ronchetti et al., 2020). Speaking of the agricultural area, the desire for

sustainability has brought to the fore a series of characteristics

represented by IPM and a series of actions for the areas where it

can be applied. Basically, IPM represents a collection of good

practices to attract attention and give rise to effective approaches in

the fight against pest populations and for the optimal and timely

management of the associated effects (Cardim Ferreira Lima et al.,

2020). IPM has developed over the years based on up-to-date, well-

verified information and gradual adoption. A series of studies

developed and researched this topic in detail for the construction

of PA areas, with innovative and well-documented techniques

(Velusamy et al., 2022). Moreover, the desire for sustainability

quickly accentuated this. The accuracy of the information, the

continuous monitoring, and the effective IPM documentation make

possible the emergence and continuous support of good practices that

can be successfully applied to the development of the agricultural field

(Ronchetti et al., 2020; Misango et al., 2022). In principle, the

adoption of IPM is done for the adequate control of pests and to

reduce them and their effects to a tolerable level. On the other hand,

the IPM effect also has a considerable positive impact on the

environment and the population. The desire for adoption is

primarily emphasized by the decrease in the amounts of pesticides

used after prior monitoring. The effects of pests, their presence, and

plant diseases represent a serious threat to agricultural production

and the resulting food security due to the agricultural sector (Misango

et al., 2022; Wu et al., 2019). The IPM objective is to create a

combination of actions associated with good practices to develop

specific solutions for each agricultural area and culture. Although

IPM notions and application methods are not relatively new

techniques, a considerable number of studies have emerged to

identify the status and trends of the agricultural sector regarding

the existence of these good practices that IPM wishes to highlight.

As highlighted by the authors (Damos, 2015) the management

of pests in a sustainable or ecological way brings into question the

reduction of pesticides and the adoption of alternatives for the

control and development of production in a safe and ecological way.

Being a basic field, agriculture represents a sector that has enjoyed a

series of changes over time marked by automation, modern crop

management and monitoring models, and various smart

methodologies. Research developed by the authors (Deguine

et al., 2021) shows the impact and evolution of IPM practices

over the last five or six decades. Data needed for the area of crop

profiles, pesticides, and strategy plans for the safe management of

agricultural areas were noted by (Bouroubi et al., 2022) to highlight

an educational basis for decision-making and risk assessment. data

creation and documentation were noted as necessary and examples

of databases and applications that can be used for continuous and

quality information with high availability were highlighted. The

need for access to data and the influence of IPM adoptions were also

noted by the authors (Tong et al., 2022) for the agricultural

production area. Here, several mechanisms and factors for the

adoption of good practices by farmers and the attached IPM

notions, as well as research trends in these directions, have been

noted. In a more advanced framework, the authors of the meta-

analysis (Sekabira et al., 2022) emphasized socio-economic factors

with impact in the combined area of IPM and climate-smart CS-

IPM. To ensure the sustainability of agricultural ecosystems, the

authors analyzed and noted the strategic determinants for the

adoption of smart innovations in the case of modern agriculture

and environmental policies. CS-IPM involves a range of practices

and techniques that are tailored to local conditions and needs.

These include crop diversification, conservation agriculture,

integrated pest management, and the use of climate-resilient

crop varieties.

Modern agriculture has great potential and is aided today by

several powerful working and monitoring technologies to increase

productivity, efficiency, and the eco-friendliness that can be

attached. Precision farming techniques and advanced

methodologies have helped to increase food security and

environmental sustainability (Wen and Guyer, 2012). Analyzing

the papers highlighted for this study, there is a general trend of

massive adoption of technological processes or automation in the

agricultural area as part of the idea and methods involved in PA. It

uses data and precision farming tools such as sensors, drones, and

precision planting equipment to gather information about soil,

weather, and crop growth, and then use that information to make

precise, data-driven decisions about planting, fertilizing, harvesting

crops or pest detection and management (Popescu et al., 2020). This

can help farmers to increase yields, reduce costs, and improve the

efficiency of their operations, being a major advantage to achieve

modern targets such as sustainability and ecological production.

CNN-based systems for insects and pest detection have been

successfully applied to a range of crops, including vegetables, fruits,

and grains. In addition to identifying insects, CNNs can also detect

damage caused by insects, such as holes and discoloration on plant

leaves. This information can be used to quantify the severity of

insect infestations and to guide pest management strategies. Digital

images of plants and crops are obtained using cameras or drones
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equipped with high-resolution sensors. These images are then

analyzed using CNNs, that has been shown to be highly effective

at image classification and object detection tasks. However, the

models used for monitoring need training and validation of insect

pest datasets and innovative optimizations. Examples of digital

images for this topic, illustrating several known insect pests, are

shown in Figure 1: A) Aulacophora indica, B) Bemisia tabaci, C)

Sesamia inferens, D) Cicadella viridis, E) Cnaphalocrocis medinalis,

F) Trigonotylus caelestialium, G) Emposca flavenscens, H) Pieris

rapae, I) Ostrinia nubilalis, J) Epitrix fuscula, K) Halyomorpha

halys, and L) Cydia pomonella.There are often problems in the

highly accurate detection of insects of interest, as they are part of the

natural setting where the conditions in which these insects are

captured are not optimal – accurate detection is hindered by

lighting conditions, various artifacts, or obturations of various

types (leaves, flowers, branches, fruits). Based on these

limitations, there has been continuous research and development

aimed at creating innovative techniques for extracting information

of interest from digital images that illustrate real contexts.

The presence of natural factors with a negative impact on

performance inclined toward the development of research based

on concrete work methods. The general workflow for insect

detection and monitoring in modern agriculture using neural

networks is composed of the following phases: a) Data collection,

b) Data processing, c) NN training, and d) Validation and testing.

To start developing a system for insect pest detection using

digital images and CNNs, the first step is to collect relevant data

consisting of images of insects and crops, which would need to be

labeled and categorized to identify the type of insects encountered

(Partel et al., 2019; Nanni et al., 2022). The next step is data

preprocessing, which involves removing noise, distortion, or other

anomalies from the collected data (Du et al., 2022). This can include

resizing images, adjusting brightness and contrast, and data

augmentation (Ahmad et al., 2022). A great feature extraction

A B D

E F G

I

H

J K L

C

FIGURE 1

Examples of harmful insects for agriculture: (A) Aulacophora indica, (B) Bemisia tabaci, (C) Sesamia inferens, (D) Cicadella viridis, (E) Cnaphalocrocis
medinalis, (F) Trigonotylus caelestialium, (G) Emposca flavenscens, (H) Pieris rapae, (I) Ostrinia nubilalis, (J) Epitrix fuscula, (K) Halyomorpha halys, (L)
Cydia pomonella (Xie et al., 2018), (https://www.dlearningapp.com/web/DLFautoinsects.htm).
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model can make use of DL techniques to focus attention on insect

pests (Li et al., 2020; Li et al., 2022). From the preprocessed dataset,

a representative subset of images needs to be selected for training

CNNs to identify and classify insect pests in the images and adjust

internal weights to improve accuracy (Khanramaki et al., 2021).

Once trained, the CNN must be validated and tested on a separate

dataset to evaluate its accuracy and identify any issues that need to

be addressed. Since manual classification and detection are time-

consuming automation using CNNs is preferred (Butera

et al., 2021).

This paper wants to present a detailed review of the methods of

automatic identification of populations of harmful insects by

involving algorithms in the field of neural networks (NNs).

Recently, it has been observed that the use of digital tools and

services for the early and automatic detection of populations of

harmful insects represents an impact factor on agricultural areas.

Moreover, the optimization of agricultural processes in

combination with these tools offers optimal and high-

performance solutions. To facilitate reading the article, a list of

abbreviations is given in Annex 1.

The presentation of the selected studies brings to the fore a

series of key, modern methods related to the topic attached to the

paper. Pest detection methods have made significant advancements

over the years, but there are still several challenges and areas that

need improvement in existing approaches. These challenges often

include accuracy and reliability, data quality and quantity,

integration with pest management, automation and scalability,

real-time detection and species and diversity. Many current

methods for pest detection still suffer from high rates of false

positives (identifying non-pests as pests) or false negatives (failing

to detect pests when they are present). On the other hand,

developing accurate machine learning models for pest detection

often requires large amounts of high-quality labeled data, which can

be expensive and time-consuming to obtain. Imbalanced datasets,

where certain pests are rare or hard to find, can lead to biased

models that perform poorly on underrepresented pests. Pest species

can be highly diverse, and methods that work for one pest may not

be effective for others. Developing generalized detection methods

that can adapt to different pests is a challenge.

2 Materials and methods

2.1 Investigation of references

The paper considered method workflow from PRISMA

guidelines (Page et al., 2021) for insect detection and monitoring in

agriculture based on NNs by investigating articles published between

2015 and 2022. This review article aims to provide an overview of the

new trends and advancements in CNN research for insect pest

detection in agriculture between 2015 and 2022. To select the

papers for this review, the focus was primarily on papers that

contribute to the development of CNN-based systems for insect

pest detection in agriculture. Specifically, papers that propose novel

CNN architectures, explore the use of transfer learning for insect pest

detection, or apply CNNs to new insect pest detection tasks were

prioritized. The selected papers demonstrate the power of CNNs in

various applications for insect monitoring in modern agriculture,

including object detection, segmentation, and recognition.

The research databases used in this review were: Web of

Science, Scopus, and IEEE. Following the Prisma flow diagram

(Figure 2), several criteria were attached for searching and

extracting articles of interest. Although there was an initially large

number of papers identified for the topic of this review, the initial

selection criteria extracted approximately 354 relevant studies in the

first instance. Of all these, only 138 were chosen based on the final

criteria related to new periods, new trends, attachment in top

publications, and innovation. An initially large number of diverse

research for the modern agricultural area and a considerable

evolution in recent years are observed.

Searches for important terms and evolution as article numbers

during the last years in the Web of Science, Scopus, and IEEE

Xplore DBs between 2015 and 2021 with AND connector are

presented in Figure 3: A) (CNN) AND (agriculture) AND (image

processing), B) (CNN) AND (agriculture) AND (insects), C)

(CNN) AND (agriculture) AND (pest detection), D) (image

processing) AND (pest detection), E) (CNN) AND (pest

detection), and F) (CNN) AND (insects). The graphs highlight

the strong increase in the number of research articles in the

connected fields in recent years regarding the use of CNN.

2.2 Datasets used

A robust image database (DB) is crucial for DL classification

and detection because it is the foundation upon which a model is

trained (Ding & Taylor, 2016). The larger and more diverse the

dataset is, the better the ML model’s performance will be. A robust

image dataset allows a DLmodel to learn a general representation of

the objects or classes it is supposed to recognize. The more diverse

the dataset, the better the model will be at recognizing new images

that it has not seen before. Also, it enables an ML model to achieve

higher accuracy in classification and detection tasks. When the

dataset is comprehensive and covers a wide range of scenarios, the

model can learn more accurately how to identify objects and

classify them.

Insect pest databases were used in agricultural monitoring

applications to track and identify the presence of insect pests that

can damage crops (Turkoglu et al., 2022). These databases are

typically created by agricultural organizations, universities, and

research institutions that have collected data on the life cycles,

presence, behavior, and distribution of various insect pests. In this

regard, analyzing the papers selected for this study, several ways to

construct datasets in training and validating models used for insect

detection and identification were observed. Several public databases

have been used by researchers in their studies to measure the

performance of the implemented architectures and to test the

defined models against the obtained results. Table 1 presents a

summary of the most known and frequently used databases for

modern insect pest monitoring applications in agriculture.

Insect pest image databases often include images of insects at

different life stages, including larvae and adult stages (Zhang S. et al.,
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2022). These images could be accompanied by additional

information, such as the insect’s common name, scientific name,

and the types of crops or plants that the insect pest is known to

damage. This is an important aspect because the primary purpose of

an insect image database is to provide a visual reference for

identifying insect pests in the field. Insect pest image databases

can be used as educational resources to help people learn about the

different types of insect pests and their impact on agriculture and

the environment (Shi et al., 2020).

One of the databases that is highlighted in the present study and

that was used by the researchers in the selected papers is the IP102

DB. As presented in the acronym, it contains 102 classes of

common insect pests with hierarchical taxonomy and broadly

totals around 72,222 images (see Table 1). The database is

regularly updated and maintained by a team of experts in the

field of entomology. It covers a wide range of insect orders. Each

entry in the IP102 Insect Database includes information on the

insect’s scientific name, common name, description, habitat, diet,

life cycle, behavior, and distribution, all being presented in high-

quality images and illustrations, making it easy to identify

different species.

The authors on IP102 DB note that existing image datasets

primarily focus on everyday objects like flowers and dogs, limiting

the applicability of advanced deep learning techniques in

agriculture. To address this gap, they introduce a comprehensive

dataset called IP102 for insect pest recognition. The authors

conducted baseline experiments on the IP102 dataset using both

handcrafted and deep feature-based classification methods. Their

findings revealed that the dataset poses challenges related to inter-

class and intra-class variance, as well as data imbalance. They

anticipate that IP102 will serve as a valuable resource for future

research in practical insect pest control, fine-grained visual

classification, and addressing imbalanced learning challenges in

this domain.

The Maryland Biodiversity Database (MBD) (Maryland

Biodiversity Database, 2022) is another important database, and it

has been used in various research works for the insect pest

monitoring area. This database is a vast and valuable public

FIGURE 2

PRISMA 2020 flow diagram for this study.
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resource that can serve as an important tool in researching various

information for the insect pest area and querying it can create

diverse datasets. The MBD database provides ecological

information about species, including their habitats and

interactions with other organisms. This can be useful for

understanding the ecological context of insect pests, their host

plants, and their natural predators. Its strengths lie in providing

detailed species records and distribution data, facilitating ecological

context for organisms, and supporting research on insect pests and

native species. Researchers and conservationists benefit from its

wealth of information to assess biodiversity impact and pest

behavior. While not specialized in pest monitoring, MBD

enhances pest management by offering a broader understanding

of local ecosystems. This collaborative database stands as a crucial

asset in safeguarding Maryland’s natural heritage and aiding

scientific research. Scientists studying insect pests or conducting

research on entomology can use the MBD to access data on insect

species’ distributions and occurrences. Pest management strategies

often require a comprehensive understanding of the local

ecosystem. MBD can provide context by offering information on

the diversity of species that may interact with or be affected by

insect pests.

A B

D

E F

C

FIGURE 3

Searches for important terms in the Web of Science, Scopus, and IEEE Xplore DBs between 2015 and 2021 with AND connector: (A) (CNN) AND
(agriculture) AND (image processing), (B) (CNN) AND (agriculture) AND (insects), (C) (CNN) AND (agriculture) AND (pest detection), (D) (image
processing) AND (pest detection), (E) (CNN) AND (pest detection), (F) (CNN) AND (insects).
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AgriPest introduces a domain-specific benchmark dataset for

tiny wild pest detection in agriculture. This dataset contains over

49.7K images and 264.7K annotated pests, making it the largest of

its kind. It aims to enhance the application of deep learning in

agriculture by providing standardized data for pest detection

research. AgriPest also defines sub-datasets, including challenges

like pest detection and population counting, and validation subsets

for various real-world scenarios. The authors build practical pest

monitoring systems based on deep learning detectors and evaluate

their performance using AgriPest. This dataset and associated code

will be publicly available, facilitating further research in pest

detection and precision agriculture.

Crafted to serve as a robust resource for training deep learning

models in pest detection, Pest24 is another important DB which

offers a vast repository of meticulously annotated images of

agricultural pests. This paper addresses the challenges of real-time

pest population monitoring in precision agriculture using AI

technology. It introduces a large-scale standardized dataset called

Pest24, comprising 25,378 annotated images of agricultural pests

collected from automatic pest traps and imaging devices. The

dataset covers 24 categories of common pests in China. On the

other hand, the study applies various advanced deep learning

detection methods, such as Faster RCNN, SSD, YOLOv3, and

Cascade R-CNN, to detect these pests and achieves promising

results for real-time field crop pest monitoring. The authors aim

to advance accurate multi-pest monitoring in precision agriculture

and provide a valuable object detection benchmark for the machine

vision community.

The analysis of Pest24 highlights three key factors influencing

pest detection accuracy: relative scale, number of instances, and

object adhesion. Due to the scarcity of multi-target pest image big

data, Pest24 holds great importance as a resource for advancing

TABLE 1 Insect DSs frequently used in agriculture applications.

DS
name

Availability/Link Classes/Observation Number of
images

Papers

IP102 Publicly/
https://github.com/xpwu95/IP102

102/Common pest species
with a hierarchical taxonomy

75 222 (Ayan et al., 2020), (Butera et al., 2021),
(Kasinathan et al., 2021), (Nanni et al., 2022),
(Wang et al., 2022), (Wu et al., 2019)

Maryland Publicly/
https://www.marylandbiodiversity.com/

20 600 species/
Cataloging living things

671 983 (Popescu et al., 2022)

AgriPest Publicly/
https://github.com/liuliu66/AgriPest

14/Common pest species 49.7 K and
264.7 K
annotated

(Wang et al., 2022)

Deng Publicly/
https://doi.org/10.1016/
j.biosystemseng.2018.02.008

10 species of tea plants insect
pests

NA (Deng et al., 2018)
(Teng et al., 2022)

NBAIR Publicly/
https://www.nbair.res.in/databases
National Bureau of Agricultural Insect Resources

40/field crop insect images NA (Cardim Ferreira Lima et al., 2020)
(Thenmozhi & Srinivasulu Reddy, 2019)

RGBInsect Publicly/
http://rgbinsect.cn/

10/stored-grained insects 3757 (Li et al., 2019)
(Li et al., 2020)

Xie 1 Publicly/
http://www2.ahu.edu.cn/pchen/web/
insectRecognition.htm

24/field crop insect images 60 per species (Cardim Ferreira Lima et al., 2020)
(Xia et al., 2018), (Xie et al., 2015)

Xie 2 Publicly/
https://www.dlearningapp.com/web/
DLFautoinsects.htm

40/field crop insect images 4500 (Cardim Ferreira Lima et al., 2020),
(Ayan et al., 2020), (Nanni et al., 2022),
(Xie et al., 2018)

MDP2018 Private/Multi-Class Pests Dataset 2018
https://doi.org/10.1109/ACCESS.2019.2909522

16/Insect pests 88 670 (Liu et al., 2019)

LLPD-26 Private/ https://doi.org/10.3389/fpls.2022.810546 26/insect pests 18 585 (Teng et al., 2022)

Pest24 Publicly/
http://aisys.iim.ac.cn/zhibao.html

24/field crop insect images 25 378 (Wang et al., 2020)
(Wang et al., 2022)

iDigBio Publicly/
https://www.idigbio.org/

NA/Biodiversity specimens
and resources

NA (Valan et al., 2019)

Turkey-
PlantDataset

Publicly/ https://github.com/mturkoglu23/
PlantDiseaseNet

15/Plant disease and pest
images

4 447 (Turkoglu et al., 2022)

CPAF
Dataset

Publicly/
https://drive.google.com/drive/folders/
1GR4S2eqahZrLTmZlPphyfcIX5fkkV36?
usp=sharing

20/insect species 73 635 (Wang et al., 2020)
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intelligent field crop pest monitoring. Characterized by its large-

scale data, small relative object scales, high object similarity, and

dense distribution, Pest24 presents unique challenges for deep

learning-based object detection methods and is poised to drive

progress in pest detection for precision agriculture while serving as

a specialized benchmark for the computer vision community.

Beyond its application in precision agriculture, Pest24 serves as

an invaluable benchmark for the machine vision community,

fostering advancements in specialized object detection. Future

work aims to expand the dataset with more diverse multi-pest

images from various practical.

Xie1 and Xie2 databases were other important resources in

creating databases or testing and training the architectures defined

in various works (Table 1). Because these datasets are not large

some authors have often resorted to augmentation techniques to

increase the size of these datasets. The Xie2 dataset also called D0

contains 40 classes of insect pests represented in 4508 RGB images

of 200 x 200px resolution.

Although there are several public databases illustrating and

grouping various common classes of insect pests, most of the

authors used their own datasets in solving the problems specific

(Bhoi et al., 2021; Rajeena et al., 2022). Creating proprietary

databases for insect pest detection or monitoring using NNs can

help improve the accuracy and specificity of pest detection systems,

while also providing flexibility and cost-effectiveness (Segalla et al.,

2020; Hong et al., 2021). From the point of view of flexibility,

creating its own database offers absolute control of the data that is

attached to train the NNs for insect pest monitoring. This is about

how the data set can be adjusted as needed to meet the changing

need for insect pest families and environmental changes that may

occur rapidly. Complete control of the specificity of pest

populations was discussed in several works to describe the

specificity zone (Khanramaki et al., 2021). By creating proprietary

databases, specific insect pests can be tailored and described

regarding each context and interest in pest recognition and

monitoring. This can help ensure that the NNs are able to

accurately identify and differentiate between the specific insect

pests, rather than simply providing a general detection of any

insect in the image (Liu and Wang, 2020; Xu et al., 2022).

It is very important that the data set describes a real context to

solve real problems with increased accuracy. What was observed in

this regard as part of the present study in relation to the

performances obtained by the authors in various works was a

tendency to create robust datasets in increasing performances.

The larger the database used for training and validating NNs, the

higher the accuracy of the created models can be (Knyshov et al.,

2021; Liu et al., 2022). The database used is determined by the

precise study objectives and the sort of data required. Researchers

interested in insect pest recognition, for example, may pick IP102 or

Pest24, but those needing ecological context may prefer MBD.

AgriPest is appropriate for precision agricultural research.

Collectively, these databases help to advance pest detection and

agricultural research. When paired with these different datasets,

CNNs provide a very effective tool for insect pest study and control.

They can help to increase pest detection accuracy, understand pest

behavior in ecological contexts, and improve real-time monitoring

and control tactics in precision agriculture. Researchers and

practitioners may use these datasets to create more effective and

efficient pest-related solutions in agriculture.

In another scenario, from a cost point of view, creating own

database can be a cost-effective alternative. Test and training data

creation solutions can capture data using low-cost methods like

phones or digital cameras, which is a pretty good starting point.

Where the data set is acquired using drones, high-fidelity cameras,

robots, or specialized human resources, the cost of acquiring and

creating the reference data set for pest monitoring can increase

commensurately with the size and quality of data acquired (Xing

et al., 2019; Tian H. et al., 2020; Genaev et al., 2022).

The organization of the data set represents another aspect noted

by the authors in the development of models for harmful insect and

pest detection in modern agriculture. In general, for training and

evaluation using CNNs for pest detection and identification, the

dataset division commonly includes training and validation sets or

training, validation, and testing sets. The most common ratio

observed in the last split was 70% for training, 20% for validation,

and 10% for testing (Huang et al., 2022). The other ratio could

include 80% for training and 20% for testing (Du et al., 2022; Zhang

S. et al., 2022), or 70% with 30% respectively (Ahmad et al., 2022).

Regarding the dataset, the authors also followed techniques like

data augmentation (Du et al., 2022; Zhang et al., 2023). Data

augmentation in the context of CNNs is the process of producing

additional training examples by applying various changes to

existing pictures in the training dataset (Albanese et al., 2021).

Geometric changes such as random rotation, horizontal and vertical

flips, random cropping, and transformations such as brightness

modifications or color jitter are examples of frequent

transformations used for data augmentation in CNNs

(Padmanabhuni and Gera, 2022). Adding random cropping can

assist the model in learning to distinguish things that are not

centered in the image (Genaev et al., 2022).

For data augmentation, some of the new trends include

synthetic data generation to increase the number of samples if the

number of representatives of a class is insufficient (Abbas et al.,

2021). Using generative models to create synthetic images is one

novel method of data augmentation. Augmentation through

synthetic data generation is a novel technique of generating new

training data using computer algorithms rather than gathering real-

world data (Huang et al., 2022). The purpose of this method is to

enhance the quantity and variety of the dataset, which can improve

the performance of ML models (Divyanth et al., 2022). Synthetic

data generation could address issues such as imbalanced datasets,

lack of data privacy, and limited data availability (Lu et al., 2019).

For the topic of agricultural pests, this can be done in a variety of

ways. There are several methods for creating synthetic data for

CNNs (Karam et al., 2022), including generative adversarial

networks (GANs), deep learning picture synthesis, data

augmentation, and data interpolation (Padmanabhuni and Gera,

2022). Conditional GAN was used by (Abbas et al., 2021) to

generate synthetic images for tomato pests and to improve the

performances. Another performance improvement was noted by

(Divyanth et al., 2022) by creating an artificially generated dataset

using GAN.
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For the testing phase, the acquisition of digital images from real

contexts can be noted. This was pursued by the authors to test the

NN architectures they created and optimized against the real

contexts, using pest images in the field (Brunelli et al., 2020). For

modern agriculture, there are some ways of acquiring digital

images, using various systems and techniques (Terentev et al.,

2022). The present study identified four important directions that

describe image acquisition vectors and were grouped and described

in Table 2. Based on the analyzed references, the performances

obtained using the created databases were also noted. In this sense,

satisfactory results are observed, and at the same time, it is

important to note that the methods of image acquisition are done

in an optimized framework and represent a strong point attached to

the research areas in this field. For the modern agricultural area, the

acquisition of data for the creation of models and automatic

solutions in pest monitoring represents an extensive process that

can include several resources (Nanni et al., 2022).

Table 2 summarizes the most common data gathering methods,

with UAVs and pheromone traps emerging as the most popular

options. This section will evaluate the benefits and drawbacks of

different techniques. The integration of ML and deep learning DL

for automated data processing, with a special focus on remote

sensing and sensory data for complete area mapping, is an emerging

research field. It is worth mentioning that remote sensing, as

investigated by (Stefas et al., 2016; Ahmad et al., 2021), has

several applications in fields such as agriculture and forestry.

Unmanned Aerial Vehicles (UAVs) are gaining remarkable

traction across diverse domains, with agriculture and

environmental monitoring being prominent beneficiaries. One of

their vital applications lies in the realm of pest detection and

management within agricultural crops Mu et al., 2018. UAVs offer

versatile data acquisition methods, including high-resolution imagery

and sensory capabilities (Tian H. et al., 2020; Cochero et al., 2022).

Equipped with high-resolution cameras, UAVs excel at capturing

images and videos of crops, facilitating the identification of insect

pests (Tian H. et al., 2020; Cochero et al., 2022). Subsequently, these

images can undergo automated pest detection using ML algorithms

(Preti et al., 2021). Moreover, UAVs can be equipped with sensors for

detecting specific chemicals in the air or on plant surfaces, thus

enabling pest identification, as well as treatment efficacy monitoring

(Velusamy et al., 2022). To combat identified pests, certain UAVs are

equipped with precision sprayers, targeting affected areas with

minimal chemical usage and environmental impact (Iost Filho

et al., 2019; Li C. et al., 2022). Thermal cameras mounted on

UAVs provide valuable temperature data, aiding in pinpointing

stressed or pest-infested crop areas due to temperature differences

(Yuan & Choi, 2021). UAVs also use multispectral cameras, such as

infrared and hyperspectral imaging, in addition to typical RGB

images, which considerably improves the accuracy of pest detection

models (Terentev et al., 2022). Another current technique employs

lidar sensors to collect high-resolution 3D pictures of agricultural

fields, allowing for the identification of pest-infested areas (Dong

et al., 2018; López-Granados et al., 2019). Lidar imaging also provides

information about crop dimensions, growth patterns, and prospective

yield (Johansen et al, 2018; Ampatzidis et al., 2020).

Nonetheless, there are several drawbacks to the UAV-based

strategy. UAVs, in general, have limited payload capacity,

restricting their ability to carry large amounts of equipment and

sensors. Furthermore, UAV flight durations are limited, often

ranging from 20 to 30 minutes depending on the type and payload.

As a result, covering large regions may demand numerous flights,

which can be both time-consuming and costly (Dong et al., 2020).

While UAVs excel in collecting high-resolution photographs of crops

and insect pests, image analysis algorithms’ accuracy may be limited,

necessitating professional analysis. Furthermore, the use of UAVs for

data collecting is vulnerable to weather and legal limitations. These

variables might limit the capacity to collect insect pest data during

certain seasons or geographical locations. Many nations have tight

UAV laws that include flying limitations as well as criteria for

permissible equipment and sensors (Csillik et al., 2018).

TABLE 2 Modality of image acquisition.

Image acquisition vector Agricultural crop/images Performances Papers

Human operators (with camera or smartphone) Oil palm/8000
Eggplant/NA
NA/563
Fruits/365

ACC: 89%
R2 = 0.85 to 0.95
ACC: 94.3%
F1 Score: 83.8%

(Ahmad et al., 2021)
(Bereciartua-Pérez et al., 2022)
(Cochero et al., 2022)
(Genaev et al., 2022)

Pheromone-based traps and cameras Apple orchard/8000
Apple/300
Vegetables/1789
Forest/50
Greenhouse/400

ACC: 97.9% training
ACC: 97% training, 93% validation
F1 Score: 83.8%
ACC: 95.3% - 97.89%
F1 Score: 90% - 92%

(Albanese et al., 2021)
(Brunelli et al., 2020)
(Guo et al., 2021)
(Hong et al., 2021)
(Rustia et al., 2020)

UAV Forest/4710
Rice/NA
Weeds, Potato, Grapes/600
NA/500
Maize/5691
Eucalyptus/4930

PRE: 70%
ACC: 80%
ACC: 90%
PRE: 85%, F1 Score: 55%
ACC: 97.59% - 98.77%
ACC: 98.45%

(Aota et al., 2021)
(Bhoi et al., 2021)
(Bouroubi et al., 2018)
(De Cesaro Júnior et al., 2022)
(Dai et al., 2021)
(Dos Santos et al., 2022)

Terrestrial vehicles and camera Pomelo orchard/510 ACC: 95.83% (Partel et al., 2019)
(Tian G. et al., 2020)
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Another way of data acquisition for insect monitoring in

modern agriculture is based on pheromone traps (Table 1). Data

acquisition using pheromone traps is a useful tool for monitoring

and controlling insect pests in agriculture and forestry. Pheromone

traps are placed in strategic locations throughout a crop. The

number and placement depend on the type of insect pest being

targeted and the size of the area being monitored. Pheromone traps

need to be checked regularly to ensure that they are working

properly. Digital cameras can be attached to the pheromone traps

to capture images of the trapped insects. The traps should be

monitored regularly, typically every 1-2 weeks. During each

monitoring visit, the traps are checked for trapped insects, and

the dig i ta l cameras are checked to ensure they are

functioning correctly.

While pheromone traps can be an effective tool for monitoring

and managing insect pests, there are some disadvantages to their

use. They are only effective against insect pests that are attracted to

specific pheromones (Cardim Ferreira Lima et al., 2020). On the

other hand, their effectiveness is limited to the area in which they

are placed (Toscano-Miranda et al., 2022). Pheromone traps can

attract not only the target insect pest but also non-target species that

are attracted to the same pheromones. Additionally, pheromone

traps can give an incomplete or inaccurate representation of the

population of insect pests. This is because some individuals of the

pest species may not respond to the pheromone lure or may be

located outside the trapping area. This can lead to incorrect

decisions about pest management strategies.

In agriculture, insect pest identification and monitoring are key

parts of precision farming because they have a direct influence on

crop production, quality, and overall agricultural sustainability.

CNNs, in conjunction with specialist databases, provide

significant promise for tackling the issues connected with insect

pest control. Deep learning architectures, object identification,

categorization and taxonomy, and real-time monitoring may be

essential elements of neural networks applied to these datasets, as

demonstrated in the selected research. With the use of CNNs and

specialized datasets, insect pest identification and monitoring have

entered a new age. This synergy has the potential to lead to more

accurate, timely, and environmentally conscious pest management

solutions. Continuous research, multidisciplinary cooperation, and

an emphasis on practical application are required to fully achieve

this promise. As technology advances, the future of insect pest

identification and monitoring in agriculture remains bright, with

the potential to greatly contribute to global food security and

sustainable agriculture practices.

2.3 Neural networks used in insect
detection, segmentation, and classification

Automated monitoring systems use sensors and cameras to

detect and identify insect pests (Amorim et al., 2019). These systems

can be connected to the internet, allowing farmers to receive real-

time information about pest populations. There are many solutions

and methodologies based on image processing, DL, and NNs. CNNs

are particularly well suited for tasks involving the detection of small

objects, such as insects, within an image. In this scenario, CNNs are

a powerful tool for pest detection and have been shown to achieve

high accuracy in many applications. One key advantage of CNNs

for pest detection is their ability to handle complex images. For

example, a CNN can be trained to detect pests in images that

contain multiple objects, different backgrounds, and varying

lighting conditions (Fang et al., 2020). Additionally, CNNs can be

trained on a large dataset of images, which can help improve the

accuracy of the model. Another advantage of CNNs for monitoring

crops for pest detection is their real-time ability (Ayan et al., 2020).

On the other hand, one of the most significant advancements in this

field is the development of transfer learning, where a pre-trained

CNN model is fine-tuned on a smaller dataset of pest images. Some

of the most used NNs for insect and pest detection and classification

are presented in Figure 4.

VGG Net (Visual Geometry Group) (Simonyan & Zisserman,

2014) is a key architecture used in insect detection and monitoring,

especially VGG-16 and VGG-19. The architecture is widely used in

computer vision applications such as object detection and image

segmentation (Popescu et al., 2022). The architecture for VGG-16

(Ramadhan & Baykara, 2022) is shown in Figure 4A, and it was the

most used for insect detection and classification tasks. The

convolutional layers are responsible for extracting features from

the input image, while the pooling layers reduce the spatial

dimensions of the feature maps to reduce computation time. The

fully connected layers are used to classify the features extracted by

the convolutional and pooling layers. The most used, VGG-16

model has a total of 16 layers and the VGG-19 has 19 layers

being a modified version of VGG-16 with the addition of the new

three convolutional layers.

Residual Network (ResNet) is another CNN family used in

insect monitoring for modern agriculture. ResNet-18, ResNet-34,

ResNet-50, ResNet-101, and ResNet-152 are variants of the CNN

architecture that was introduced in 2015 by researchers at Microsoft

(He et al., 2016). The key innovation of ResNet is the use of

“residual connections,” or shortcut connections, that allow the

network to learn identity mapping and make it easier to train

very deep networks. This is shown in Figure 4B as a residual block

example. According to the investigated papers, ResNet-50 was the

most used for insect detection and classification tasks, and the basic

architecture is shown in Figure 4C.

The R-CNN (Region-based CNN) architecture is a type of

object detection model that uses a combination of CNNs and

region proposal algorithms to detect objects within an image (Ren

et al., 2015) and was also used for insect monitoring. It is a two-

stage process that first generates a set of region proposals and then

uses a CNN to classify and refine the proposals. The first stage of the

R-CNN architecture is the region proposal algorithm, which

generates a set of regions or “proposals” that may contain an

object of interest. These regions are then passed to the second

stage of the R-CNN architecture, which is the CNN. This is used to

classify and refine the regions generated by the region proposal

algorithm and it is done by extracting features from each region and

passing them through a series of convolutional and fully connected

layers. In this context, another architecture often used for insect

detection tasks was Faster R-CNN. This is a type of object detection
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model that uses a CNN to extract features from an image and then

uses a region proposal network (RPN) to propose regions that may

contain objects. The feature extractor typically uses a pre-trained

CNN, such as VGG or ResNet, to extract features from the input

image. The main advantage of Faster R-CNN over other object

detection models is its efficiency, as it shares computation between

the RPN and the classifier. The Faster R-CNN architecture, adapted

from (Ren et al., 2015) is presented in Figure 4E.

The Inception CNN architecture (Szegedy et al., 2015) is also

representative of insect classification and detection. This deep CNN

architecture utilizes a combination of convolutional, pooling, and

inception modules to efficiently learn hierarchical representations of

visual data. The novel aspect is that it includes a series of

components named Inception modules that apply a combination

of convolutional and pooling layers at different scales, allowing the

network to efficiently capture and learn both the high-level and low-

level features of the image. This review highlighted that the most

used architecture from this family, for insect detection and

classification was the InceptionV3 (Szegedy et al., 2016).

Following the structure and features presented previously, the

basic scheme of Inception V3 can be viewed in Figure 4F

(adapted from Szegedy et al., 2016).

Dense Convolutional Network (DenseNet) is another CNN

family used for insect detection and classification. This neural

network architecture is characterized by dense layers Huang et al.,

2020. Each layer is connected to every other layer in the network

(Huang et al., 2017). This creates a dense network of connections,

which allows for a more efficient flow of information and a greater

capacity for learning. A dense block is shown in Figure 4D, adapted

from (Huang et al., 2017). One of the main advantages of DenseNet

architecture is its ability to effectively handle large amounts of data

and complex patterns (Huang et al., 2017).

YOLO (You Only Look Once) is another state-of-the-art family

that is widely used in the modern agricultural sector for real-time

A B

D E

F

C

FIGURE 4

Examples of neural networks used: (A) VGG-16 architecture (adapted from Simonyan and Zisserman 2014, (B) Residual block example (adapted from
He et al., 2016), (C) Example architecture of ResNet-50 (adapted from He et al., 2016), (D) Dense block example (adapted from Huang et al., 2017),
(E) Faster RCNN architecture (adapted from Ren et al., 2015), (F) Inception V3 architecture (adapted from Szegedy et al., 2016).
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insect detection and monitoring. YOLO (Redmon et al., 2016) is an

object detection algorithm that uses a single stage to perform object

detection. Unlike other object detection algorithms that rely on

region proposals, YOLO uses a grid of cells to divide the image into

smaller regions and predicts the object class and location for each

cell. The algorithm is trained on large datasets, such as the COCO

(Common Objects in Context) or ImageNet, and has been designed

to be fast and accurate. Different variants from this family were

used: YOLOv2 (Redmon & Farhadi, 2017), YOLOv3 (Redmon &

Farhadi, 2018), YOLOv4 (Bochkovskiy et al., 2020), YOLOv5s,

YOLOv5m, and YOLOv5l (Ultralytics, 2020).

A synthetic presentation of NNs used for insect and pest

detection and classification in agricultural applications is given in

Table 3. Based on the information from Table 3, the graph in

Figure 5 describes the evolution over the last three years of the most

used neural networks for insect monitoring in modern agriculture.

This study primarily centers its focus on exploring emerging

trends in CNNs for insect pest detection and monitoring through

the innovative application of new combinations, while also

acknowledging classic CNN models as reference points. This

approach aligns with the prevalent practice in the field, where most

studies strive to strike a balance between pioneering CNN architectures

and established, foundational models. This dual perspective,

embracing innovation while respecting tradition, mirrors a common

practice observed in the contemporary studies within the deep learning

community. Researchers understand that leveraging the strengths of

TABLE 3 CNN used in insect and pest detection.

CNN
family/

References

Representatives/
configuration

Function Performances Papers

AlexNet
5

AlexNet Classification ACC: 80.3% -
91.31.%,
F1 score: 96%

[(Khanramaki et al., 2021), (Li et al., 2019),
(Malathi and Gopinath, 2021), (Xu et al., 2022), (Divyanth et al., 2022)

CapsNet
2

CapsNet/modified Classification ACC: 82.4%,
PRE: 75.41%

(Xu et al., 2022), (Zhang S. et al., 2022)

CNN
8

CNN Classification ACC: 91.5% -
98,6%
F1 score: 95%

(Chodey & Shariff, 2021), (Hossain et al., 2019), (Espinoza et al., 2016),
(Kasinathan et al., 2021), (Sharma et al., 2020), (Singh et al., 2021)

BPNN Classification ACC: 91% (Zhu et al., 2020)

DenseNet
8

DenseNet 121 Detection
and
classification

ACC: 88.06% -
99.1%

(Abbas et al., 2021), (Sanghavi et al., 2022),
(Zhang & Chen, 2020), (Shi et al., 2020)

DenseNet 169 Detection mAP: 92.3% (Butera et al., 2021)

DenseNet 201 Detection
and
classification

ACC: 79.01%,
95.52%

(Nanni et al., 2022), (Singh et al., 2021)

Weakly DenseNet-16 Classification ACC: 93.42% (Xing et al., 2019)

EfficientNet
4

EfficientNet Detection ACC: 97.89% -
99.1%

(Dai et al., 2021), (Sanghavi et al., 2022), (Takimoto et al., 2021)

EfficientNet B0 Detection ACC: 94.25% (Nanni et al., 2022)

EfficientDet
1

EfficientDet D0 Detection ACC: 95.3% -
97.9%

(Hong et al., 2021)

GoogLeNet
1

GoogLeNet with
Inception modules

Classification ACC: 91.02% (Malathi and Gopinath, 2021)

Inception
10

Inception v3 Classification ACC: 75.3% -
99.04%
mAP: 71%

(Ayan et al., 2020), (Fang et al., 2020), (Hansen et al., 2019), (Rajeena et al.,
2022), (Sanghavi et al., 2022), (Singh et al., 2021), (Wang et al., 2020), (Liu et al.,
2022)

Inception ResNetv2 Detection ACC: 91.14% (Khanramaki et al., 2021), (Singh et al., 2021)

LeNet
3

LeNet5 Classification ACC: 93.1% -
96.1%,
PRE: 94%

(Albanese et al., 2021), (Ding & Taylor, 2016)
(Segalla et al., 2020)

MobileNet
10

MobileNet Detection
and
classification

ACC: 82.10% -
97.39%

(Ayan et al., 2020), (Singh et al., 2021), (Xing et al., 2019)
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TABLE 3 Continued

CNN
family/

References

Representatives/
configuration

Function Performances Papers

MobileNetv2 Detection ACC: 81.32% -
96.29%

(Albanese et al., 2021), (Hong et al., 2021), (Nanni et al., 2022), (Rajeena et al.,
2022), (Xing et al., 2019), (Zhang & Chen, 2020)

MobileNetv3 Detection mAP: 92.66% (Butera et al., 2021)

Optimized MobileNet Classification ACC: 95.04% (Rimal et al., 2022)

NASNet/1 NASNetMobile Classification ACC: 73.46% (Singh et al., 2021)

Perceptron/1 Multi-layer perceptron Detection ACC: 98.45% (Dos Santos et al., 2022)

R-CNN/13 Cascade R-CNN Detection mAP: 70.83% (Dos Santos et al., 2022)

Faster R-CNN Detection
and
classification

ACC: 60,2% - 99%
F1: 85.5% - 99.5%
mAP: 65.58% -
89.1%

(Ahmad et al., 2021), (Alsanea et al., 2022), (Butera et al., 2021), (Du et al.,
2022), (Guo et al., 2021), (Hong et al., 2021), (Li et al., 2019), (Liu et al., 2019),
(Wang et al., 2022), (Shi et al., 2020)

Mask R-CNN Detection
and
segmentation

PRE: 85% (De Cesaro Júnior et al., 2022)

MSR-RCNN/ResNet-50
backbone

Detection mAP: 67.4% (Teng et al., 2022)

RegNet
1

RegNet Detection ACC: 98.07% (Dai et al., 2021)

ResNet
31

ResNet/modified Detection ACC: 95.83% (Tian G. et al., 2020),

ResNet 18/modified Detection ACC: 60.3% (Roosjen et al., 2020)

ResNet 34 Detection ACC: 94.3%, 91.2% (Cochero et al., 2022), (Malathi and Gopinath, 2021)

ResNet 50 Classification ACC: 43.99% -
99.04%
F1 score: 55% -
92.6%
mAP: 74,24% -
88.5%

(Ayan et al., 2020), (Bereciartua-Pérez et al., 2022), (Butera et al., 2021), (De
Cesaro Júnior et al., 2022), (Fang et al., 2020), (Dai et al., 2021), (Khanramaki
et al., 2021), (Li et al., 2019), (Liu et al., 2019), (Liu et al., 2022), (Malathi and
Gopinath, 2021), (Nanni et al., 2022), (Rajeena et al., 2022), (Sanghavi et al.,
2022), (Wang et al., 2020), (Wang et al., 2022), (Xu et al., 2022)

ResNet 53 Detection mAP: 77.29% (Lv et al., 2022)

ResNet 101 Detection mAP: 85.53% -
99.5%

(Hong et al., 2021), (Li et al., 2019), (Liu et al., 2019), (Lv et al., 2022), (Wang
et al., 2022), (Zhang & Chen, 2020), (Shi et al., 2020)

ResNet 152 Detection ACC: 96.31% (Zhang & Chen, 2020)

ResNeXt-50 Classification ACC: 86.5% (Li C. et al., 2022)

RetinaNet
3

RetinaNet Detection mAP: 65.03% -
94.77%

(Li et al., 2020), (Wang et al., 2022)

RetinaNet50 Detection mAP: 86.40% (Hong et al., 2021)

SqueezeNet 1 SqueezeNet Classification ACC: 94.02% (Ayan et al., 2020)

ShuffleNet
2

ShuffleNet v1 Classification ACC: 83.58% (Xing et al., 2019)

ShuffleNet v2 Classification ACC: 83.58% (Xing et al., 2019)

SSD
3

SSD Detection PRE: 70% (Aota et al., 2021)

SSD with MobileNetv2 Detection mAP: 84.54% (Hong et al., 2021)

SSD/with VGG-16 and
ResNet-50

Detection mAP: 63.38% (Wang et al., 2022)

VGG
23

VGG16/modified Classification ACC: 67% - 97.9%
R2 = 0.85 to 0.95

(Albanese et al., 2021), (Ayan et al., 2020), (Bereciartua-Pérez et al., 2022),
(Khanramaki et al., 2021), (Knyshov et al., 2021), (Kusrini et al., 2021), (Li et al.,
2019), (Nazri et al., 2018), (Rajeena et al., 2022), (Sanghavi et al., 2022), (Singh
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both new and classic CNN models can yield comprehensive insights

and solutions, ultimately driving the field forward.

Regarding key trends and advancements, CNNs continued to be

a popular choice for image-based insect pest detection. Researchers

were developing and fine-tuning CNN architectures to achieve

higher accuracy in recognizing and classifying pests from images.

Transfer learning techniques were becoming increasingly important

in this domain. Researchers were pre-training CNNmodels on large

TABLE 3 Continued

CNN
family/

References

Representatives/
configuration

Function Performances Papers

et al., 2021), (Valan et al., 2019), (Wang et al., 2020), (Wu et al., 2019), (Xing
et al., 2019), (Zhang S. et al., 2022)

VGG16/modified Detection F1:95.25%, mAP:
78.20%, PRE: 99%

(Segalla et al., 2020), (Wang et al., 2022), (Shi et al., 2020)

VGG19 Classification ACC: 74.07% -
99.02%

(Ayan et al., 2020), (Fang et al., 2020), (Rajeena et al., 2022), (Singh et al., 2021)

VGG19/improved +
RPN

Detection mAP: 89.22% (Xia et al., 2018)

Xception
4

Xception Classification ACC: 74.07% -
97.98
PRE: 77%

(Ayan et al., 2020), (Fang et al., 2020), (Rajeena et al., 2022), (Singh et al., 2021),
(Kuzuhara et al., 2020)

YOLO
14

YOLO Detection ACC: 88.06% -
92.50%

(Shi et al., 2020), (Zhong et al., 2018)

YOLOv3/improved Detection PRE: 77%, mAP:
77.29%, F1: 87% -
90%

(Kuzuhara et al., 2020), (Liu and Wang, 2020)
(Lv et al., 2022), (Partel et al., 2019), (Rustia et al., 2020)

Tiny-YOLOv3 Detection F1 Score: 90% -
92%

(Rustia et al., 2020)

YOLOv4 Detection F1 Score: 55% -
83.8%

(Genaev et al., 2022), (Takimoto et al., 2021)

YOLOv5 Detection ACC: 98.45%, mAP:
77.0% -99.2%

(Bereciartua-Pérez et al., 2022), (Dos Santos et al., 2022), (Zhang Y. et al., 2022),
(Zhang et al., 2023)

ZF Net
2

ZF Net Detection mAP: 88.5%,
75.46%

(Li et al., 2019), (Liu et al., 2019)

FIGURE 5

The graph of the evolution in the last three years of the most used neural networks.
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datasets and then fine-tuning them for insect pest detection tasks.

This approach helped in achieving better results even with limited

labeled data for specific pests. For object detection and localization,

object detection models like Faster R-CNN, YOLO and SSD were

adapted for insect pest monitoring. These models not only classified

pests but also provided bounding box coordinates, which is crucial

for precise pest localization. As a new trend, researchers were

experimenting with advanced data augmentation techniques to

improve model robustness. Techniques like GANs were used to

create synthetic pest images to augment the training dataset. Next,

focusing on network architectures, capsule networks, which aim to

address the limitations of traditional CNNs in handling hierarchical

features, have been explored for insect pest recognition (Xu et al.,

2022; Zhang S. et al., 2022). They can capture the spatial hierarchies

of pest body parts for improved classification. Some researchers

have proposed hybrid architectures that combine the strengths of

CNNs for image processing and recurrent neural networks (RNNs)

for sequential data processing. This is particularly useful when

tracking pests’ movements over time (Butera et al., 2021; Alsanea

et al., 2022; Du et al., 2022). To make pest detection systems more

transparent and interpretable, explainable AI in architectures

techniques have been integrated into neural network

architectures. This allows users to understand why a particular

pest detection decision was made. Researchers often choose or

design architectures based on the unique characteristics and

challenges of the pests they are targeting and the monitoring

environment. Advancements in neural network architectures for

insect pest detection and monitoring are ongoing, so staying up to

date with the latest research papers and developments in the field is

essential for the most current insights.

2.4 Performance indicators

Looking at the area of impact and innovation, the new trends

stand out with high-performance indices in relation to the area of

pest identification. Attaching these was done to create a comparison

area. Since the research was based on deep learning models, the

indicators most used as evaluation methods of these models were

highlighted as part of this study, being represented by accuracy,

precision, sensitivity, specificity, F1 score, Jaccard index, mean

average precision (mAP), and sometimes R2. Names and

calculation formulas are attached in Table 4. The most used

performance indicators were mAP, accuracy, and F1 score.

Representative indices were also extracted from the creation of

the confusion matrix (Ahmad et al., 2022) where the values for TP –

True Positive, TN – True Negative, FP – False Positive, and FN –

False Negative are indicated.

2.5 Software used

This study underlines the need of tracking the software used in

NNs (Table 5). This is especially important given the fast

developments in NNs and the advent of new software and

approaches. Nevertheless, various software programs may yield

somewhat different results due to differences in implementation

and optimization strategies. Knowing what software was used

allows others to replicate and validate the results. This is

especially significant for improving the area and expanding on

previous studies. Furthermore, knowing the software utilized helps

enhance collaboration in the fields of NNs and PA. It allows

academics to share code and data, enabling the flow of ideas and

speeding up research and development.

As can be observed from Table 5, Tensorflow in combination

with Keras is the most popular choice for software development in

pest detection or identification systems using CNNs (Fang et al.,

2020). The second popular way of software implementation,

showing increasingly high and modern adoption, is represented

by PyTorch with the attached torch and torch-vision libraries.

TensorFlow is an open-source software library developed by

Google for building and training ML models (Abadi et al., 2016). It

is a popular and powerful DL framework that provides a wide range

of tools and APIs for building and training models (Wang et al.,

2022). TensorFlow is a library for numerical computation that is

particularly well-suited to the computation of large-scale linear

algebra operations, which are a common component of many ML

algorithms. It provides a wide range of tools for building and

training DL models, including CNNs and recurrent NNs. It also

includes support for distributed training and deployment on

different hardware platforms. For the task of detection of harmful

insects and pests in modern agriculture, it was a popular

choice (Table 5).

Keras is an open-source software library written in Python that

provides a high-level interface for building and training DL models

(Chollet et al., 2015). It is built on top of other popular DL

TABLE 4 Performance indicators used in the review.

Indicator Formula Indicator Formula

Accuracy (ACC) ACC =
TP + TN

TP + TN + FP + FN

Sensitivity
(SEN) SEN =

TP
TP + FN

Precision
(PRE) PRE =  

TP
TP + FP

Specificity
(SPE) SPE =  

TN
TN + FP

F1 Score
(F1) F1 =  

2 · TP
2 · TP + FP + FN

Jaccard index
(j) j =  

TP
TP + FN + FP

Mean Average Precision
(mAP) mAP =  

1
N *  o

N

i=1

APi R2
R2 (y, ŷ) =   1 −  on

i=1

(yi − ŷi)
2

on
i=1 (yi − ӯ)2

R2 =  
Explained   variation
Total  Variation
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frameworks, including TensorFlow, and provides a simple and

intuitive API for defining and training models. Keras was

designed with the goal of making DL accessible to a wider

audience, including researchers, students, and developers with

limited ML experience.

For insect monitoring tasks, another software used was

PyTorch. Based on the analyzed papers, a strong adoption of the

framework in pest detection tasks is observed in the last three years,

especially in 2022. Facebook (actual Meta) team created PyTorch as

an open-source machine learning framework (Paszke et al., 2019). It

is a well-known and sophisticated DL framework that offers a

variety of tools and APIs for developing and training ML models.

Torch is a scientific computing framework that enables efficient

tensor operations and automated differentiation. PyTorch is built

on top of the Torch library and improves these capabilities by

including a dynamic computational graph, allowing for more

flexible and intuitive model creation, and debugging. PyTorch

includes a variety of tools and APIs for developing and training

DL models such as CNNs, recurrent NNs, and others.

The MATLAB programming and numerical computing

platform do not have the same characteristics as the libraries and

deep learning frameworks like Tensorflow + Keras or PyTorch,

based on the performance and flexibility associated with the Python

programming language in which they are implemented. MATLAB

(matrix laboratory) is a programming environment and a

programming language used primarily for numerical computing

and scientific computing (MathWorks Matlab 22). MathWorks

MATLAB provides a wide range of built-in functions and tools

specifically designed for image processing and computer vision

applications (Nagar and Sharma, 2021). MATLAB’s Image

Processing Toolbox provides a comprehensive set of tools for

image analysis, filtering, segmentation, feature extraction, and

object recognition (Divyanth et al., 2022). The toolbox includes

functions for common image processing tasks such as image

smoothing, noise reduction, edge detection, and morphological

operations. MATLAB also provides support for deep learning and

machine learning, which can be used for image classification and

object recognition tasks.

In this sense, although there are various software solutions, the

Python programming language remains a solid basis to build such

deep-learning systems based on artificial neural networks in the

detection, identification or even monitoring of insect pest. Cloud

computing services capable of providing modules, APIs or even

software platforms as a service in the development of deep-learning

solutions for pest detection have also been noted. The main

characteristic in their case is represented by the availability and

flexibility in accessing these types of cloud resources, being

therefore part of the new trends.

Another software used for insect monitoring in precision and

modern agriculture was Fastai. It is a high-level open-source DL

library built on top of PyTorch (Howard & Gugger, 2020). It is

designed to make it easier to train state-of-the-art DL models with

as little code as possible. The library provides a simple and

consistent API for quickly training deep NNs on a wide range of

tasks, such as image classification, object detection, text

classification, and natural language processing. One of the unique

features of Fastai is its approach to transfer learning, which involves

leveraging pre-trained models and fine-tuning them for specific

tasks (Cochero et al., 2022).

Another modern software that was used for insect monitoring

in agriculture was Imagga Cloud API which is a cloud-based image

recognition platform that provides a suite of APIs for developers to

build image-related applications (Imagga, 2020). Imagga API was

used for rice pest detection (Bhoi et al., 2021), integrating IoT and

TABLE 5 Software used.

Software Description Link Papers

PyTorch ▪ An open-source machine
learning framework
▪ Based on Python
programming language and
Torch library

https://pytorch.org/ (Cochero et al., 2022), (Du et al., 2022), (Dai et al., 2021), (Guo et al., 2021), (Huang et al.,
2022), (Lv et al., 2022), (Wang et al., 2022), (Zhang Y. et al., 2022), (Zhang et al., 2023), (Shi
et al., 2020)

TensorFlow ▪ An end-to-end open-source
machine learning platform

https://
www.tensorflow.org/

(Ahmad et al., 2021), (Alsanea et al., 2022), (Bereciartua-Pérez et al., 2022), (De Cesaro Júnior
et al., 2022), (Fang et al., 2020), (Guo et al., 2021), (Hossain et al., 2019), (Karam et al., 2022),
(Knyshov et al., 2021), (Rajeena et al., 2022), (Rimal et al., 2022), (Sharma et al., 2020),
(Takimoto et al., 2021), (Valan et al., 2019), (Wang et al., 2020), (Wang et al., 2022), (Wu
et al., 2019)

Keras ▪ High-level, modular, and
flexible open-source neural
network library and API
based on Python
programming language

https://keras.io/ (Ayan et al., 2020), (Fang et al., 2020), (Hossain et al., 2019), (Karam et al., 2022), (Knyshov
et al., 2021), (Lu et al., 2019)

Imagga
Cloud API

▪ Image recognition API as a
service

https://imagga.com / (Bhoi et al., 2021)

Fastai ▪ Deep learning library https://www.fast.ai/ (Cochero et al., 2022)

MathWorks
Matlab

▪ Programming and numeric
platform designed for
engineers and scientists

https://
www.mathworks.com/
products/matlab.html

(Divyanth et al., 2022), (Nagar and Sharma, 2021)
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UAV systems. The Imagga Cloud API provides a range of image

analysis and recognition services, including image tagging, content-

based image search, color extraction, cropping, and ML algorithms

that can identify objects, scenes, colors, and other attributes within

an image.

3 New trends in harmful insect and
pest detection

Regarding insect monitoring for detection, classification, and

even segmentation there are several modern approaches to train

and validate a computer system for pest monitoring tasks using AI

(Zhang, 2022). CNNs are frequently utilized in this procedure

because they are particularly well-suited to image recognition

tasks (Teng et al., 2022). Over time a well-trained system can be

used to identify pests quickly and accurately in real-world scenarios

and images, enabling farmers, growers, and other stakeholders to

take action to address any issues quickly and effectively (Aota et al.,

2021). The modification of networks in relation to specific detection

or identification tasks has evolved over time and new ways of

implementation and development have emerged to meet

these needs.

Training and validating individual networks are the first

starting point. Modifying existing architectures through various

mathematical or structural methods is a common practice to

increase the robustness of such a system. By increasing the

number of training images and fine-tuning the network’s

parameters, the accuracy of pest identification using NNs may be

enhanced (Xia et al., 2018). This procedure is done multiple times

until the system achieves a satisfactory level of accuracy (Butera

et al., 2021). On the other hand, approaches to modify the base

structure and new optimization methods are addressed to satisfy the

same final need, to increase the accuracy and precision of a system

in relation to representative areas for pest detection and monitoring.

Models with notable results starting from the basic structures of

state-of-the-art networks by applying transfer learning techniques,

increasing dimensions, and implementing custom optimizations

were developed (Abbas et al., 2021). The research papers adopted

transfer learning applied to several public databases or similar

research datasets noted and described in previous chapters.

Oftentimes, research has involved the creation of proprietary and

private databases that are focused on the needs of each area

under investigation.

Multinetwork-based systems are new trends for insect

monitoring and detection. The most representative ones are based

on custom ensemble models. The use of ensembles of NNs and

innovative modified architectures can improve the accuracy of pest

detection. A CNN ensemble is a mixture of several CNN models

that results in a stronger, more accurate prediction model. The aim

of an ensemble is to use the strengths of many models to

compensate for the shortcomings of a single model (Xu et al.,

2021). The final decision of an ensemble of CNNs is derived by

fusion of the predictions of separate CNNmodels, often by majority

voting or weighted averaging. An ensemble’s diversity of models

decreases the problem of overfitting, resulting in greater accuracy

and precision. Once trained, the outputs of the individual CNN

models are combined to form a final prediction. The idea is that by

combining the predictions of multiple models, the overall accuracy

and reliability of the system can be improved, and the risk of false

positives or false negatives can be reduced. One of the main

advantages of using a CNN ensemble for insect pest detection is

that it can improve the ability of the system to generalize to new

images or environments that may be different from the training

dataset. By using multiple models with different strengths and

weaknesses, the ensemble can be more robust to variations in

lighting, background, or other factors that may affect the

appearance of the insects in the images. The majority voting

ensembles, weighted average ensembles, and multinetwork

ensembles using a variety of CNNs backbones are the most

popular and most adopted in the case of pest detection and

identification. Some examples of ensemble models of NNs are

presented in Figure 6.

Fusion by weighted sum rule and combinations based on

different topologies and various Adam optimization were used

(Nanni et al., 2022) for the detection of several insect pests

attached to each database. The performance of the presented

work was noted and compared for different datasets. CNN

architectures are trained using various optimization functions,

including some novel Adam variations, and then fused. The

system is described in Figure 6A (inspired by Nanni et al., 2022).

The paper compared some of the state-of-the-art architectures for

pest classification: ResNet50, GoogleNet, DenseNet201, and

EfficientNetB0. Some other models were added and used for their

speed and efficiency on mobile devices: ShuffleNet and

MobileNetV2. In terms of optimization, Adam variants like

diffGrad was used to calculate a scaling factor in the learning rate.

Another strategy using transfer learning, fine-tuning, and

model ensemble was proposed in (Ayan et al., 2020). D0, SMALL,

and IP102 datasets were again selected and used to train, validate,

and test the accuracy rates of the proposed models. The study

involved modifying and re-training seven pre-trained CNN models

using transfer learning and fine-tuning on a 40-class dataset.

The top three models (Inception-V3, Xception, and MobileNet)

were ensembled using the sum of maximum probabilities and

weighted voting with weights determined by a genetic algorithm

to create two ensembled models: SMPEnsemble and GAEnsemble

(Ayan et al., 2020). Pre-trained models on ImageNet were

implemented and the proposed model of insect classification

ensemble methodology can be seen in Figure 6B. The paper

highlights that deep networks with different architectures can

have varying generalization capabilities when trained on the same

dataset. This is because different models can extract different

features from the data based on their architecture. Therefore, it is

important to consider the model architecture when selecting the

best-performing model for a given task. Adopting the suitable CNN

architecture for insect pest detection helps increase the detection

system’s accuracy and efficiency. It may be able to construct models

that are more adapted to certain pest detection tasks by using the

inherent capabilities of each architecture because various insect

pests might have diverse physical characteristics that necessitate

specific detection procedures. Certain pests, for example, may have

Popescu et al. 10.3389/fpls.2023.1268167

Frontiers in Plant Science frontiersin.org18

https://doi.org/10.3389/fpls.2023.1268167
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


a distinguishing pattern of spots or stripes on their body, while

others may have distinct antennae or wings. As a result, it is critical

to carefully pick the CNN architecture to be employed for insect

pest identification. Because of its capacity to extract data at different

scales, an architecture like Inception-V3 may be more suited for

pests with complex traits. MobileNet, on the other hand, can be

more suited for simpler pests or resource-constrained applications

because of its lightweight design.

Another ensemble model was proposed in (Turkoglu et al.,

2022) using a majority voting method Figure 6C. Feature

concatenation and SVM (Support Vector Machine) classifier was

also implemented at the core of the proposed system which used six

state-of-the-art networks for pest classification and plant

disease classification.

The tendency of researchers to modify the NN backbone was

also observed. Modifying the backbone of a pre-trained NN for a

given task is a typical approach in deep learning (Li Z. et al., 2022).

Many cutting-edge models are constructed on modified backbones

of pre-trained NNs (Kuzuhara et al., 2020; Liu et al., 2022).

Although this aspect does not define a new area, there are some

directions that can be highlighted in relation to the idea of

modifying the backbone of a neural network. In this sense,

specific modifications of the backbone and the impact on the

performance of the network can describe novel and innovative

research (Table 6). Modifying the NN backbone can have a

significant impact on its performance. For instance, changing the

number of layers in the backbone can affect the depth of the

network and its ability to learn more complex features. Adding or

removing layers can also affect the number of parameters in the

network, which can impact its overall computational efficiency.

Additionally, changing the architecture of the backbone can impact

the type of features extracted from the input data. A defining

example of the area of innovation brought by modifying the

backbone of a model can be researched in the study (Butera et al.,

2021). The authors (Butera et al., 2021) used Faster R-CNN, SSD,

and RetinaNet. Backbone used was based on several models such as

VGG, ResNet, DenseNet, and MobileNet, adapted for the task of

insect pest detection in real-world scenarios. Additionally, the

A

B

C

FIGURE 6

Examples of multi-network-based systems as a new trend: (A) Adapted system architecture for the ensemble model proposed in (Nanni et al., 2022)
for insect pest detection, (B) Adapted insect classification ensemble methodology proposed in (Ayan et al., 2020), (C) Adapted majority voting
ensemble model for pest classification proposed in (Turkoglu et al., 2022).
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impact of the transfer learning technique on the models used for

accuracy and inference time was also studied. The authors noted

that a model based on Faster R-CNN with MobileNetv3 is a strong

point for insect pest detection.

The YOLOv4-tiny architecture with CSPDarknet53-tiny as the

backbone was used to train a pest fly detection model using a dataset

of insects of interest (Genaev et al., 2022). The network consists of

Backbone, Neck, and three recurring blocks including Convolution,

CBL, and CSP blocks. The CSP block structure utilizes a feature

pyramid network to divide the input feature map into two parts.

This structure reduces computational complexity while maintaining

accuracy in object detection. Using YOLOv4-tiny allowed for the

development of a fly recognition method that can be implemented

as a modern mobile application.

A network for robust pest detection, with emphasis on small-

size, multi-scale, and high-similarity pests was proposed by the

authors (Teng et al., 2022). The proposed pest detection network

used two customized core designs: a multi-scale super-resolution

(MSR) feature enhancement module and a Soft-IoU (SI)

mechanism. The MSR module developed enhances feature

expression ability for small-size, multi-scale, and high-similarity

pests, while the SI mechanism emphasizes position-based detection

TABLE 6 CNN ensemble architectures and backbone modifications.

NN Used Novelty Combination/
Description

Function/
Application

Perfor-
mances

Papers,
year

AlexNet, GoogleNet,
DenseNet201

CNN
Ensemble

▪ Majority voting fusion Classification/Apple pest and
disease classification in a real-
time application

ACC: 96.1% -99.2% (Turkoglu
et al., 2020)

AlexNet, VGG16, ResNet-50,
InceptionResNet V2

CNN
Ensemble

▪Fusion by correlation
coefficient comparison
▪Majority voting

Classification/Citrus pest F1 Score: 0.935 (Khanramaki
et al., 2021)

EfficientNetB0, GoogleNet,
ResNet-50, MobileNetV2,
ShuffleNet, DenseNet201

CNN
Ensemble

▪Fusion by weighted sum rule
▪Combination based on
different topologies
▪ Various Adam optimization

Detection/
Insect pest

ACC:
95.52% (SMALL),
74.11% (IP102),
99.81% (D0)

(Nanni et al.,
2022)

AlexNet, ResNet 18, 50 and 101,
DenseNet201, GoogleNet

CNN
Ensemble

▪ Fusion by averaging
▪ Majority voting ▪Integrating
SVM classifier

Detection and classification/
Plant disease and pest

ACC: 97,56%,
96.83%

(Turkoglu
et al., 2022)

Inception-V3, ResNet-50,
Xception, VGG-16, VGG-19,
MobileNet

CNN
Ensemble

▪Fusion by majority voting
▪Four-stage classification
methodology

Classification/Insect ACC: 98% (Ayan et al.,
2020)

FasterRCNN, MobileNetV3 Backbone
modification

▪FasterRCNN with
MobileNetV3 backbone

Detection/Insect pest mAP: 92.66% (Butera et al.,
2021)

YOLO-v4-tiny,
CSPDarknet53

Backbone
modification

▪YOLO v4-tiny with
CSPDarknet53-tiny backbone

Detection/Insect pest F1: 0.838 (Genaev
et al., 2022)

R-CNN
ResNet50

Backbone
modification

▪Novel MSR-RCNN model
with ResNet-50 backbone

Detection/
Multi-class pest

mAP: 67.4% (Teng et al.,
2022)

SSD, RetinaNet,
FCOS, R-CNN,
FPN, Cascade R-CNN

Backbone
modification

▪SSD with VGG16 as
backbone
▪ResNet 50 for object detetion

Detection/Insect pest (Wang et al.,
2022)

RetinaNet Backbone
modification

▪RetinaNet with feature
pyramid network backbone

Detection/multi-scale insect
detector

mAP: 94.77% (Li et al.,
2020)

VGG, ZFNet,
ResNet 50 - 101,
Faster R-CNN

Backbone
modification

▪Deep CNN fused with CSA Detection and classification/
Multi-class pests

mAP: 75.46% (Liu et al.,
2019)

YOLOv3,
Xception

Two-stage detector ▪Two-stage detection using
YOLOv3 and Xception

Detection and classification/
Small insect pests

PRE: 77% (Kuzuhara
et al., 2020)

Inception,
ResNet50

Two-stage detector
and backbone
modification

Two-stage CNN solution
integrating GaFPN and GAM

Detection and classification/
Small insect pests

mAP: 71% (Liu et al.,
2022)

YOLOv5,
ShuffleNetv2

Model combination ShuffleNetv2-YOLOv5-Lite-E
improved detection model for
edge devices

Detection/
Tea culture pest

mAP: 97,43% (Zhang et al.,
2023)

GhostNet,
YOLOv5

Model combination YOLOv5-GhostNet
combination for embedding
devices

Detection/
Orchard pest

mAP: 99% (Zhang Y.
et al., 2022)
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requirements. The MSR-RCNN is more suitable for pest detection

tasks and includes a ResNet50 backbone and a feature full fusion

mechanism to improve multi-scale pest detection. A feature full

weighting mechanism was added and optimizes the detection

performance of similar pests from two dimensions (depth and

location). The implemented MSR module includes a super-

resolution component used to obtain a six-layer feature map for

recognizing small-sized objects. Additionally, the full feature fusion

mechanism is used to integrate all features at once for recognizing

multi-scale objects. On the other hand, in this study, a large-scale

pest dataset of trap images was developed (LLDP-26). It can be

observed that the changes made to the existing models and

backbones bring considerable improvements in performance,

enabling the solution of pest identification problems from digital

images and outperforming existing state-of-the-art models

and techniques.

A two-stage detection and identification method for small insect

pests using CNN was proposed in (Kuzuhara et al., 2020). The

authors used YOLOv3 as an object detection model, which is a

popular deep learning model for object detection. A region proposal

network (RPN) to help identify the regions of the image that

contain the pest is used. After identifying the regions of interest,

the proposed method performs pest classification using the

Xception model (Chollet, 2017), which is a deep CNN that has

been shown to achieve high accuracy in image classification tasks.

The authors further improved the classification accuracy by using a

data augmentation method based on image processing, which

helped to generate more training examples by applying

transformations to the original images. One of the strengths of

this two-stage detection method is that it can handle the challenges

posed by small insect pests, which are difficult to detect using

traditional object detection methods due to their small size and low

contrast. This method shows a good way in achieving high accuracy

in detecting and identifying small insect pests, which can help

improve pest management in agriculture.

Regarding the new trends, the authors in (Zhang et al., 2023)

proposed an improved detection model based on ShuffleNetv2 and

YOLOv5. This paper presents a target detection model based on the

ShuffleNetv2-YOLOv5-Lite-E method, which substitutes the Focus

layer with the ShuffleNetv2 algorithm. It also reduces the model size

by pruning the YOLOv5 head at the neck layer. The suggested

model is more robust and lightweight, and it may enhance detection

efficiency while maintaining the recognition rate.

Combining YOLOv5 and GhostNet (Zhang Y. et al., 2022) and

using a custom pest dataset allowed the method to achieve a higher

mAP with the same number of epochs. In this case, the usage of

GhostNet in YOLOv5 can be described as a new trend. GhostNet is

a lightweight neural network architecture proposed in 2020 (Han

et al., 2020) for usage in edge devices. The utilization of Ghost

modules, which replace the usual convolutional layers in a NN, is

the core characteristic of GhostNet. Ghost modules have a primary

and secondary path. The primary path is a normal convolutional

layer, but the secondary path has fewer channels and is used to

simulate the behavior of the primary path. GhostNet may achieve

equivalent precision to bigger networks by employing Ghost

modules but with fewer parameters and lower processing cost.

This makes it appropriate for deployment on low-power devices

with limited processing resources. For the proposed model, authors

noted 1.5% higher mAP than the original YOLOv5, with up to three

times fewer parameters and the same or less detection time. With

this architecture, the mAP obtained by the authors was about 99%.

Table 6 synthesizes the novelty and performances of CNN

ensemble architectures.

4 Applications

In real applications, data classification and analyzing huge

volumes of data are time-consuming. To increase efficiency, the

final strategy is to create and optimize ML and DL models to

estimate and create powerful systems for understanding features,

patterns, and complex, big amounts of data (Csillik et al., 2018;

Abayomi-Alli et al., 2021). The focus area is to train models to find

optimal parameters, auto-adjust values, and adapt to a robust

architecture generated and optimized step by step over several

epochs of training with dataset capture (Nanni et al., 2022; Wang

et al., 2022). For agricultural areas, ML is widely used to automate

time-consuming, labor-intensive tasks and to collect essential

information having at the core mathematical models,

computational resources, and infrastructure with high

performance and standards. As part of this study, we can note

this as a new trend in precision agriculture. Proposed works show

TABLE 7 Applications.

Application Papers

Harmful insect
detection

(Albanese et al., 2021), (Alsanea et al., 2022), (Ayan et al., 2020), (Butera et al., 2021), (Cochero et al., 2022), (Genaev et al., 2022), (Guo et al., 2021),
(Hansen et al., 2019), (Hong et al., 2021), (Hossain et al., 2019), (Iost Filho et al., 2022), (Espinoza et al., 2016), (Kasinathan et al., 2021), (Khanramaki
et al., 2021), (Knyshov et al., 2021), (Li et al., 2019), (Li et al., 2020), (Li C. et al., 2022), (Liu et al., 2019), (Liu and Wang, 2020), (Lv et al., 2022),
(Malathi and Gopinath, 2021), (Nagar and Sharma, 2021), (Nanni et al., 2022), (Rajeena et al., 2022), (Rimal et al., 2022), (Rustia et al., 2020),
(Sanghavi et al., 2022), (Teng et al., 2022), (Valan et al., 2019), (Wang et al., 2020), (Wang et al., 2022), (Xia et al., 2018), (Zhang & Chen, 2020), (Shi
et al., 2020)

Infected crops
by insects

(Bereciartua-Pérez et al., 2022), (Bhoi et al., 2021), (Fang et al., 2020), (Espinoza et al., 2016), (Kusrini et al., 2021), (Nazri et al., 2018), (Sharma et al.,
2020), (Singh et al., 2021), (Tian G. et al., 2020), (Turkoglu et al., 2020), (Turkoglu et al., 2022), (Wu et al., 2019), (Xing et al., 2019), (Xu et al., 2022),
(Zhang S. et al., 2022), (Zhu et al., 2020)

Crop
monitoring

(Ahmad et al., 2021), (Aota et al., 2021), (Bouroubi et al., 2018), (Brunelli et al., 2020), (De Cesaro Júnior et al., 2022), (Ding & Taylor, 2016), (Dai
et al., 2021), (Partel et al., 2019), (Dos Santos et al., 2022), (Takimoto et al., 2021), (Zhong et al., 2018)
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considerable results and note the popularity of AI in general. The

applicability aspect of using these defined systems brings to the

forefront a series of advantages and development areas. As can be

seen from Table 7, most of the papers are focused on the following

main applications: harmful insect detection, identification of

infected crops, and crop monitoring.

4.1 Harmful insect detection

CNNs have become increasingly popular in image-processing

applications for modern agriculture following their ability to

identify insects and features in images. According to this study,

one of the applications of CNNs in the field of modern and

precision agriculture is harmful insect detection. The

identification of harmful insects is crucial for the protection of

crops and the prevention of plant diseases (Lv et al., 2022). CNNs

can be an effective tool for harmful insect detection in images (Guo

et al., 2021; Alsanea et al., 2022). By training the network on a large

and diverse dataset, CNN can learn to identify a wide range of

harmful insects. However, the issues of class imbalance and

transferability need to be addressed to ensure that CNN performs

well in real-world applications. For effective detection of harmful

insects, the first step is to collect and label a dataset of digital images

containing both harmful and non-harmful insects (Cochero et al.,

2022; Wang et al., 2022). In this case, the dataset should be large and

diverse to ensure the great performance of the CNN model and to

ensure that the CNN can learn to recognize a wide range of harmful

insects. Because this detection uses CNNmodels that learn different

features of an image through convolutional operations, the second

step is the preprocess the images in the dataset created to ensure

that they are in a format that can be fed into the CNN. This may

involve resizing the images, converting them to grayscale, or

normalizing the pixel values (Alsanea et al., 2022; Zhang Y. et al.,

2022). Following this scenario, the next step is to train the chosen

CNN model using the dataset prepared (Malathi and Gopinath,

2021; Nagar and Sharma, 2021; Liu et al., 2022). This involves

feeding the network the labeled images and adjusting the weights of

the neurons through backpropagation to minimize the error

between the predicted and actual labels. Transfer learning applied

on a custom insect pest dataset can be used and hyperparameter

tuning to speed up the process in this topic. Related to this aspect,

most of the papers analyzed for this study include such

methodology (Ayan et al., 2020). After the CNN was trained, it

can be used to classify new images of insects as either harmful or

non-harmful. To do this, the new image is fed into the CNN, and

the output is a probability score indicating the likelihood that the

insect in the image is harmful. A threshold value can be set, and if

the probability score is above this value, the insect is classified

as harmful.

One of the main challenges that were identified in applications

for harmful insect detection using CNNs is the issue of class

imbalance (Du et al., 2022). Harmful insects may be rare in the

dataset, which can lead to the CNN being biased towards non-

harmful insects. To overcome this, techniques such as over-

sampling or under-sampling can be used to balance the dataset.

Another challenge identified is the issue of transferability. CNNs

trained on one dataset may not perform well on a different dataset

due to differences in the types of insects or the background images.

To address this, transfer learning can be used, which involves using

a pre-trained CNN as a starting point and fine-tuning the network

on the new dataset, as mentioned earlier (Butera et al., 2021; Li W.

et al., 2022; Popkov et al., 2022).

4.2 Infected crops by insects

CNNs are a powerful tool for identifying insect-infected crops.

They can be trained to learn patterns and features in images that are

indicative of insect damage and provide predictions on whether the

crops are healthy or infected (Turkoglu et al., 2022; Zhang S. et al.,

2022). The use of CNNs in agriculture can improve crop yields and

help farmers prevent and manage insect infestations more

effectively (Espinoza et al., 2016; Sharma et al., 2020; Bereciartua-

Pérez et al., 2022). Infected crops by insects can have a significant

impact on the agricultural industry, leading to the loss of crops and

revenue (Xu et al., 2022). With the increasing advancements in

computer vision, for modern agriculture, our study highlights that

the CNNs became an effective tool for identifying and detecting

insect infestations in crops.

CNNs are commonly utilized in applications such as image

classification, object identification, and segmentation. CNNs may

be taught to recognize patterns and characteristics in images that

are indicative of insect damage in the context of recognizing insect

infestations in crops. Similarly, to the insect detection tasks

discussed, a huge collection of images of healthy and infected

crops must be developed for applications used to target diseased

crops. The images are then annotated with whether the crops are

healthy or sick, as well as the species of bug inflicting the harm. The

CNN models are then trained by giving them tagged images,

allowing them to understand the patterns and characteristics

associated with insect-infested crops.

On the other hand, the CNN model can also provide

information about the type of insect causing the damage, enabling

farmers to take appropriate measures to prevent further damage. In

addition to identifying insect-infected crops, CNNs can also be used

for segmentation tasks (Zhang & Chen, 2020). Segmentation

involves dividing an image into different regions or objects. In the

context of identifying insect infestations, segmentation can be used

to identify and evaluate the areas of the crop that are infected. This

can provide more detailed information to farmers and enable them

to target their treatment strategies more effectively.

4.3 Crop monitoring

The third area of applications using models based on DL,

respectively on CNNs, is crop monitoring. This area of

application has a major impact when considering pest insect

populations and managing the effects of their presence. In this

sense, there have been several studies that have included this

direction of development. Crop monitoring refers to the process
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of keeping track of the growth, development, and health of crops.

Crop monitoring can be done using a variety of methods, including

satellite imagery, drone imagery, ground-based sensors, and visual

inspections. However, the traditional methods of crop monitoring

can be time-consuming, expensive, and require a significant

number of resources. With the advent of AI and ML, the use of

CNNs for crop monitoring has become increasingly popular. In

crop monitoring, CNNs can be used to analyze images of crops and

provide insights into their growth, development, and health. The

process of crop monitoring using CNNs typically involves several

steps including data collection, data preprocessing, training NNs,

and evaluating performances in a specific area of interest (Dai et al.,

2021). Applications of crop monitoring using CNNs have a wide

range of applications in modern agriculture, including disease and

pest detection or even yield estimation (Zhong et al., 2018; Tian G.

et al., 2020). CNNs can be used to detect the presence of diseases in

crops by analyzing the images of the leaves and other parts of the

plant. This can help farmers to take timely action to prevent the

spread of diseases and minimize crop losses. On the other hand, this

process can be automated by introducing real-time monitoring

modules, based on hardware systems and software modules

optimized for mobile platforms, used in the field. Important to

note, crop monitoring using CNNs has the potential to

revolutionize agriculture by providing farmers with real-time

insights into the growth, development, and health of their crops.

CNNs can analyze images of crops quickly, accurately, and at a

fraction of the cost of traditional methods (Vanegas et al., 2018). By

using CNNs for crop monitoring, farmers can make informed

decisions about crop management, minimize losses due to

meteorological conditions, diseases, and pests, and optimize

their yields.

5 Discussion

This review paper points out several features in relation to the

areas of massive pest detection, classification, and recognition in

various crops. The research method plans to highlight the

advantages and disadvantages as well as the new trends of CNNs

and the application of image processing within these aspects of PA.

On the other hand, this study highlights the use of innovative

approaches and techniques, such as DL, transfer learning, active

learning, ensembles of CNNs, and multi-scale feature fusion, for

pest detection and classification from digital images. Overall, this

study is focused on insect monitoring including real environment,

NNs, and new trends.

Harmful insects and pest detection present a series of challenges

that researchers tend to study more and more and solve the

problems that arise. Analyzing the research extracted from

established databases, we noticed the wide interest in recent years

based on the topic of modern and precision agriculture. As it was

presented in the previous chapters, the databases chosen for

TABLE 8 Recent review/survey papers on similar topics.

Paper/
year

Description Period Refe-
rences

Our differences

(Abade et al., 2021) ▪ Systematic plant disease review
▪ CNN for crop disease recognition – trends and gaps.
▪ State of the art through systematic review used – StArt Tool

2010-
2019

121 ▪ Focused on insects including
real environment.
▪ Focused on new trends
(including 2022).
▪ New investigated methods for
review papers (PRISMA).
▪ More references.

(De Cesaro Júnior &
Rieder, 2020)

▪ Different approaches like CNN and other image classifiers for insect or
diseased plants detection from images.

2015 -
2019

57 ▪ Focused on insects including
real environment.
▪ Focused on new trends
(including 2022).
▪ New investigated methods for
review papers (PRISMA).
▪ More references.

(Cardim Ferreira
Lima et al., 2020)

▪ Identification and monitoring of insect pests using automatic traps.
▪ Using infrared sensors, audio sensors, and image-based classification

2007 -
2020

77 ▪ Focused on more insects
including real environment
▪ Focused on image processing
▪ Focused on neural networks
▪ Focused on new trends
(including 2022).
▪ More references.
▪ New investigated methods for
review papers (PRISMA)

(Iost Filho et al.,
2019)

▪ Using drones in pest management to obtain canopy reflectance data of
arthropod infested plants.

1998 -
2018

319 ▪ Focused on insects including
real environment

(Continued)
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extracting the papers of this review study were Web of Science,

IEEE, and Scopus. Most of the papers chosen for analysis were

extracted from the Web of Science database one of the most widely

used citation databases in the world. Research on new trends and

impact information has been placed in the 2020-2022 range. For the

review topic, similar articles were extracted and compared. Their

analysis is presented in Table 8, where the differences compared to

this presented review and the area of contributions were also noted.

Based on the analysis, good quality information was highlighted,

and it was observed that the interest in the detection of harmful

insects and pests in modern agriculture using image processing and

NNs is quite pronounced.

Training, validation, and testing modalities are important

points in the research of architectures that automate processes in

modern agriculture. In the initial steps, acquiring the data set and

organizing it is extremely important. Most papers reviewed for this

study highlighted the impact of a robust dataset, adding images

taken from real contexts. It has been observed that for the modern

area, techniques such as data augmentation and synthetic data

generation play an important role to diversify the data set. These

implications solve the problems where the training and validation

data set is small and for multi-class pest detection tasks it can solve

the class imbalance problem. A modern use case was noted by the

authors in (Karam et al., 2022) developing a web app for synthetic

data generation using DC-GANs, for agricultural pest detection

(whiteflies). The study illustrates how employing GAN in the

pipeline can improve the model’s capacity to generalize and

hence improve the accuracy of detected bounding boxes.

Image processing is another important step to note. Due to the

acquisition of digital images from real contexts, the presence of

TABLE 8 Continued

Paper/
year

Description Period Refe-
rences

Our differences

▪ Focused on new trends
(including 2022).
▪ Focused on neural networks
▪ New investigated methods for
review papers (PRISMA)

(Ghosh et al., 2021) ▪ Strategies and future trends on molecular and automated pest identification
(thrips) for rapid and high throughput diagnosis.

2001-
2020

253 ▪ Focused on insects including
real environment
▪ Focused on new trends
(including 2022).
▪ New investigated methods for
review papers (PRISMA)

(Kumar & Kukreja,
2022

▪ Systematic review on wheat disease prediction models
Kitchenham investigation method (Kitchenham et al., 2010)

1997-
2021

102 ▪ Focused on insects including
real environment
▪ Focused on new trends
(including 2022).
More references.
New investigated methods for
review papers (PRISMA)

(Liu & Wang, 2021) ▪ Plant disease and pest detection based on deep learning
▪ Aspects of classification, detection and segmentation networks are discussed

2014-
2020

108 ▪ Focused on new trends
(including 2022).
▪ Focused on insects including
real environment
▪ More references.
▪ New investigated methods for
review papers (PRISMA)

(Preti et al., 2021) ▪ Insect pest management using camera-equipped traps and smart traps
▪ Remote sensing and electronics for long-distance pest monitoring
▪ Automatic detection and analysis for insect detection and counting
▪ Automatic traps usage benefits

1980-
2020

75 ▪ Focused on new trends
(including 2022).
▪ Focused on image processing
▪ Focused on neural networks
▪ More references.
▪ New investigated methods for
review papers (PRISMA)

(Toscano-Miranda
et al., 2022)

▪ Insect pests and disease detection in cotton cultures using ML and IoT
▪ Focused on remote sensing and AI techniques
▪ Trends for smart agriculture
▪ Kitchenham investigation method [Kit 10]

2014-
2021

100 ▪ Focused on new trends
(including 2022).
▪ Focused on insects including
real environment
▪ Focused on image processing
▪ Focused on neural networks
▪ More references
▪ New investigated methods for
review papers (PRISMA)
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insects at the image level presents some aspects that have a negative

impact on the training and evaluation of the model that receives this

data as input. These aspects are represented by the relatively small

size of the insects, artifacts at the image level, and the context in

which they are illustrated: complex background, various types of

occlusions (branches, leaves), the presence of insects in large

numbers, and small object detection. Image processing aids in the

preprocessing and enhancement of input pictures, hence boosting

the accuracy and performance of CNN models. Images collected

from various sources, such as digital cameras or drones, may have

differences in lighting, background noise, and other artifacts that

might affect the accuracy of insect detection. As a result, image

processing techniques like filtering, segmentation, and

normalization can aid in the removal of noise and artifacts, the

improvement of contrast, and the highlighting of areas of interest in

pictures. Image processing may also aid in the extraction and

selection of useful aspects from digital images, such as color,

texture, and shape, that are significant to insect pest

identification. The CNN models can learn to discriminate

between various insect species and effectively categorize them by

finding and extracting these traits, even in complex situations.

To synthesize the findings, the present review paper highlighted

the fact that the combination of CNN architectures, as well as the

modification of existing architectures through various techniques,

bring to the fore notable performances in terms of accuracy.

According to the previously mentioned characteristics related to

the novelty in the combination of convolutional neural networks

and the problems in the detection of harmful insects of interest, a

series of studies of interest were identified with various presented

methods and integrating databases illustrating real contexts.

Starting in 2019, the authors (Liu et al., 2019) presented a DL

approach named PestNet. It was highlighted that multi-class pest

detection is a crucial step for effective pest management in modern

agriculture. In this work, PestNet includes a novel channel-spatial

attention module, a region proposal network, and a position-

sensitive score map (PSSM). A newly collected large-scale pest

image dataset named MPD2018 was proposed to evaluate the

PestNet model achieving 75.46% mAP on 16 pest classes,

outperforming other state-of-the-art methods.

Following Pest24 paper and database, to evaluate multi-pest

detection performance, the dataset described is divided into

training, validation, and test sets, with four state-of-the-art object

detection methods employed. YOLOv3 achieves the highest mAP of

63.54% and an impressive AP of 98.6% for individual pests under

optimal parameters. A 3-fold cross-validation experiment confirms

similar results. The paper examines various factors affecting

detection performance, highlighting the significant impact of

relative scale on AP while indicating that color discrepancy has

negligible influence.

Authors (Wang et al., 2022) also proposed a DL model, this

time for the recognition and counting of apple pests. The MPest-

RCNN named model achieved mAP and F1-Score values of 99.11%

and 99.50%, evaluated using an original dataset of three typical pests

in apple orchards. The paper presents a new Faster R-CNN

structure based on the ResNet101 feature extractor and a novel

CNN structure with small anchors to extract features, therefore

boosting recognition accuracy for small pests.

Hunger Games search-based deep convolutional neural

network (HGS-DCNN) model for crop pest image classification

was proposed (Sanghavi et al., 2022), adding a new convolutional

layer to decrease parameter redundancy. Pre-processing and

augmentation, followed by pest categorization, are the two steps

of the model proposed. Pre-processing makes use of a novel

adaptive cascaded filter (ACF) in conjunction with decision-based

median filtering (DMF) and guided image filtering techniques. The

proposed model outperformed existing pre-trained architectures

such as ResNet50, EfficientNet, Dense Net, Inceptionv3, and VGG-

16 in terms of accuracy, precision, F1-score, sensitivity, and

specificity, with values of 99.1%, 97.80%, 97.80%, 97.82%, and

99.43%, respectively.

In the area of precision agriculture, the advent of new-

generation AI technology has ushered in a promising era of real-

time pest population monitoring. CNNs have exhibited amazing

performance in insect pest identification and categorization as part

of deep learning approaches. Their capacity to learn detailed

characteristics from large-scale visual data permits accurate

recognition, even when inter-class variances are small. Factors

like as dataset size, model design, and data quality can all have an

impact on CNN performance. It is still difficult to provide

robustness against intra-class volatility and data imbalance.

Ongoing research in pest identification and monitoring enhances

CNNs’ capabilities. Collaboration among agricultural, entomology,

computer vision, and machine learning professionals enables

transdisciplinary solutions.

6 Conclusions

Following this study, the use of new trends in deep learning has

the potential to revolutionize the field of pest monitoring and

significantly improve pest management in agricultural sector.

Algorithms such CNNss have shown great promise in accurately

identifying and classifying pests in digital images with high precision

and accuracy rates. Currently, CNNs have become a potent tool in

identifying crops that are infected with insects. Researchers have

developed ensemble techniques where multiple CNN models are

combined to achieve better performance. This technique is becoming

increasingly popular in the field of pest identification due to its

effectiveness in handling complex datasets and the ability to capture

diverse features of insects. Optimizing existing models for identifying

harmful insects by modifying their architectures specifically for this

topic represents another approach with a strong innovative impact.

For modern and precision agriculture or integrated pest

management, farmers can enhance their treatment approaches by

utilizing applications like insect detection for harmful insects,

identifying crop infections caused by insects, or monitoring crop

growth, which can offer them comprehensive insights and allow them

to precisely target their treatments.
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